Вальцовые станки а1 бзн. Основные узлы вальцового станка типа А1-БЗН. Техническая характеристика станков типа ЗМ2

При производстве муки процесс измельчения зерна и промежуточных продуктов является одним из главных, так как в значительной мере влияет на выход и качество готовой продукции. Измельчение зерна - одна из наиболее энергоемких операций. Технологические приемы и машины, применяемые для измельчения, в значительной степени определяют технико-экономические показатели мукомольного завода.

При выборе оборудования и общей характеристики процесса измельчения на вальцовых станках вводится нормативный показатель средней удельной нагрузки, который определяют отношением суточной производительности размольного отделения мукомольного завода к общей длине мелющей линии. Для вальцовых станков А1-БЗН эта нагрузка составляет 70...75 кг/(см·сут).

Расход электроэнергии не может быть определен аналитически, но установлены определенные практические нормативы удельного расхода электроэнергии на 1 т готовой продукции в целом по заводу.

На основные показатели эффективности вальцового станка влияют отношение окружных скоростей вальцов (дифференциал), состояние поверхности, точность зазора по длине вальцов. Увеличение окружных скоростей вальцов при постоянном дифференциале значительно повышает производительность, несколько увеличивает расход энергии и практически не влияет на гранулометрический состав измельченного продукта. Окружная скорость быстровращающихся рифленых вальцов составляет 5,5...6 м/с, а микрошероховатых - 5,2...5,4 м/с.

Существенное влияние на производительность и характер измельчения оказывает дифференциал. При увеличении дифференциала преобладает разрушение частиц за счет деформации сдвига, при уменьшении-возрастает роль деформации сжатия.

Большое влияние на качество и производительность вальцового станка оказывает не только величина зазора, но постоянство его размера по всей длине вальцов. Правильную цилиндрическую форму вальцов обеспечивают при шлифовке на специальных шлифовально-рифельных станках. На постоянство величины зазора может оказывать также влияние состояние подшипников, пружин-амортизаторов и шарнирных соединений.

На качество измельчения отрицательно влияет радиальное биение вальцов, которое может быть следствием неправильной геометрической формы отклонений при запрессовке полуосей, дефектов литья, вызывающих дебаланс. Чем меньше радиальное биение вальцов, тем стабильнее рабочий зазор, выше качество размола, больше износостойкость вальцов. Поэтому технология обработки вальцов обязательно включает их динамическую балансировку на специальном станке.

Важным условием выполнения всех последовательных технологических этапов измельчения зерна является обеспечение заданных параметров рифленой микрошероховатой поверхности вальцов, которые для каждой технологической системы рекомендованы Правилами и учтены в форме исполнения вальцовых станков. Рифли нарезают на шлифовально-рифельном станке, а микрошероховатую поверхность наносят струей сжатого воздуха и абразивного материала на станке со специальным пескоструйным устройством.

Вальцовый станок ЗМ2 двухсекционный (рис.) с автоматическим регулированием производительности предназначен для измельчения зерна и промежуточных продуктов размола на мукомольных заводах.

Рис. Вальцовый станок ЗМ2

Станок включает: станину 7; вальцы 3 и 28; распределительный 4 и дозирующий 5 валики; аспирационное устройство 2; рычаги 6, 11, 15, 23; винты 7,17, 24; планку 8; секторную заслонку 9; пружины 10, 22; питающую трубу 12; датчики 13 и 14; механизм грубого привала 19; механизм 25 настройки и выравнивания подвижного вальца; межвальцовую передачу 26; эксцентриковый вал 27и электродвигатель 29.

Мелющие вальцы - это две стальные полуоси и рабочий барабан, изготовленный из никель-хромистого чугуна, наружная поверхность которого отбелена. Вальцы 3 и 28 в станине 1 устанавливают на роликовых подшипниках так, чтобы между линией, соединяющей оси вальцов, и горизонталью был угол 45°. Один из каждой пары вальцов имеет только вращательное движение (быстровращающийся), второй (медленновращающийся) кроме вращательного может иметь и поступательное движение в направлении, перпендикулярном оси. Этим обеспечиваются регулирование зазора между вальцами, его равномерность по длине вальцов, быстрое сближение (привал) и удаление (отвал), а также прохождение между вальцами твердых посторонних предметов без поломок деталей станка и повреждения вальцов. Вальцы связаны между собой шестеренчатой передачей. Очищают вальцы щетками 30.

Настройку вальцов на параллельность проводят винтовыми механизмами. Для параллельного сближения вальцов служит эксцентриковый механизм. Твердые посторонние предметы проходят между вальцами благодаря кратковременному увеличению зазора при сжатии пружины амортизатора, установленного под рычагом подвижного вальца.

Питающий механизм станка двухваликовый. Распределительный валик 4 имеет разнонаправленные (левые и правые) винтовые рифли, а дозирующий 5 - 35 продольных рифлей на окружности на драных системах и 59 рифлей на размольных. Механизм регулирования питания позволяет автоматически изменять подачу продукта дозирующим валиком в зависимости от поступления его в питающую трубу.

Питающий механизм приводится в движение плоскоременной передачей от ступицы быстровращающегося вальца, а дозирующий - от распределительного посредством шестеренчатой передачи. Щель между секторной заслонкой и распределительным валиком регулируют вручную.

Вальцовые станки типа ЗМ2 выпускают с механическим автоматом, который обеспечивает выполнение следующих операций:

Отвал и привал подвижного вальца;

Выключение и включение вращения питающих валиков;

Закрытие и открытие секторной заслонки.

Отвал и привал вальцов сопровождаются световой сигнализацией. При отвале загораются красные сигнальные лампы. При холостом ходе станка сигнальные лампы включены, при рабочем режиме выключены.

Для регулирования подачи продукта над дозирующим валиком 5 на рычаге 6 шарнирно закреплена секторная заслонка 9, которая соединена тягой 18 и рычагами 11 и 15 с датчиком питания 13, находящимся в питающей трубе станка. Для возврата заслонки в нижнее (закрытое) положение служит пружина 10, усилие которой можно изменять перестановкой ее ушка в отверстиях опорной планки на клапане 16. Для регулирования величины перемещения (хода) секторной заслонки служит винт 17, закрепленный на клапане 16.

Правый кривошип рычага 6 соединен через серьгу 20, винт 24, амортизационную пружину 22, рычаг 23, вал 21 с рычагом автомата управления. Левый кривошип рычага 6 через планку 8 опирается на винт 7, закрепленный на станине, который ограничивает движение секторной заслонки при закрытии ее и исключает поломку деталей.

Предварительную установку величины питающей щели осуществляют вращением винта 24. Дополнительно питающую щель во время работы станка (при очистке питающего бункера) увеличивают путем оттяжки винта 24 за маховичок «на себя».

Включение грубого привала вальцов, вращение валиков 4 и 5, а также перемещение секторной заслонки 9 выполняются автоматически при наполнении продуктом питающей трубы. Обратные процессы протекают также автоматически при прекращении поступления продукта в питающую трубу станка.

Техническая характеристика станков типа ЗМ2

Производительность, т/сут...........60... 100

рифленых...............490

гладких...............390

Расход воздуха на аспирацию, м 3 /ч........600

Мощность электродвигателя привода

вальцов одной половины, кВт........15,0.. .22,0

Габаритные размеры, мм......................1800x1470x1390

Масса, кг................................2550...3350

Вальцовый станок А1-БЗН (рис.) применяют в составе комплектного оборудования на мукомольных заводах с увеличенным выходом муки высоких сортов и устанавливают группами по четыре и пять машин с общими капотами.

Вальцовый станок состоит из следующих основных узлов: мелющих вальцов; привода вальцов; механизмов настройки и параллельного сближения вальцов; системы привала-отвала вальцов; приемно-питающего устройства; станины.

Мелющие вальцы 8 установлены парами в обеих половинах станка. Причем линия, соединяющая центры торцевых окружностей вальцов, образует угол 30° с горизонталью. С уменьшением этого угла улучшаются условия питания вальцовой пары и увеличивается коэффициент заполнения зоны измельчения.

Мелющие вальцы выполнены в виде бочки с запрессованными в нее с обеих сторон цапфами. Твердость поверхности бочек для рифленых и гладких вальцов соответственно составляет 490...530 и 450...490 НВ. Бочки и цапфы полые. Глубина верхнего отбеленного слоя бочек 10...20 мм. Номинальный размер бочек 250x1000 мм. Вальцы в станке располагают под углом 30° к горизонтали.

Радиальную и осевую нагрузки, действующие на рифленые вальцы при измельчении продукта, воспринимают подшипники. Подшипники 1 двух верхних вальцов (в каждой половине станка по одному) прикреплены к боковине болтами, причем два из них призонные. Нижний валец каждой половины станка может перемещаться относительно верхнего. Это дает возможность регулировать величину зазора между вальцами, а также обеспечить мгновенный отвал нижнего вальца при прекращении подачи продукта, что позволяет избежать опасной работы вальцов «рифлей по рифлям». Для этого корпуса подвижных подшипников б и 10 установлены на цапфах 9, запрессованных в отверстиях боковины. Корпуса подвижных подшипников имеют разъемные крышки. Один из корпусов этих подшипников сопрягается с цапфой через эксцентриковую втулку 7, вращением которой изменяют взаимное расположение мелющих вальцов и добиваются параллельности.

В корпусах установлены роликовые сферические подшипники 11, внутренние обоймы которых посажены на конические части цапф вальцов. Демонтируют подшипники с конической части цапфы специальным гидравлическим съемником. Он нагнетает масло через отверстие цапфы вальца в место сопряжения с конической поверхностью внутренней обоймы. На левых концах цапф закреплены шестерни 3 и 5 межвальцовой передачи, которые закрывают кожухом 4.


Рис. Мелющие вальцы с подшипниковыми узлами, приводом и межвальцовой передачей

Крутящий момент от электродвигателя передается клиноременной передачей на ведомый шкив 13 верхнего быстровращающегося вальца. Для привода применяют узкие клиновые ремни УА-4500-6. Шестерни и шкив закреплены на цапфах шпонками 12. Диаметр ведущего шкива для рифленых вальцов 150 мм, для гладких 132 мм.

К кожуху межвальцовой передачи прикреплен корпус 2 (рис.) устройства охлаждения быстровращающегося вальца.

Рис. Устройство охлаждения вальца станка ЗМ2

Консольная трубка 1 введена в пустотелый валец и одним концом жестко прикреплена к корпусу. Внутри корпуса (в подводящей магистрали) смонтирован пробковый кран 3, с помощью которого регулируется подача воды во внутреннюю полость вальца. Отвод воды из вальца в корпус обеспечивает насадка 5, ввернутая в резьбовое отверстие цапфы.

При замене вальцов подачу воды перекрывают вентилем 4, закрепленным на подводящей вертикальной трубе.

Охлаждение вальца происходит следующим образом. Вода через кран, регулирующий подачу, попадает в изолированную камеру, откуда через радиальное отверстие поступает в трубку и из нее разбрызгивается в полость вальца. Центробежные силы инерции, возникающие при вращении вальца, способствуют хорошему омыванию внутренней его полости и отводу тепла. При нормальной работе системы охлаждения температура быстровращающегося вальца не должна превышать 60 °С. По данным испытаний, температура поверхности вальца не превышает 36 °С, а продукта после измельчения - 25°С.

Охлаждение вальцов оказывает положительное влияние на технологические показатели помола. Снижение температуры в зоне измельчения предотвращает подсушивание оболочек и перегрев продуктов размола. Уменьшение влагоотдачи стабилизирует влажность продуктов измельчения, соответственно снижается накапливание зарядов статического электричества. В охлажденных продуктах меньше вероятность конденсации влаги в самотечных трубах и на ситах рассевов. Снижение теплового расширения охлаждаемых вальцов обеспечивает стабильность рабочего зазора. Для улучшения теплообмена внутренняя поверхность вальца должна быть обработана так, чтобы не было глубоких раковин, заусениц и других неровностей.

Устройство подачи зерна выполнено: для I драной системы в виде дозирующего и промежуточного валиков, для остальных систем с рифлеными вальцами (кроме 12-й размольной) в виде сочетания дозирующего валика и шнека; для размольных систем в виде сочетания распределительного и дозирующего валиков. Привод устройства подачи зерна обеспечивает плоскоременная передача.

Изменения передаточного числа редуктора и, следовательно, частоты вращения дозирующего валика у станков драных систем (кроме первой) и 11-й, 12-й размольных систем достигают применением механизма с вытяжной шпонкой, управляемого рукояткой через реечную шестерню. Другие исполнения устройств подачи продукта не имеют шпонки в редукторах. Вращение от ведомого шкива плоскоременной передачи редукторам передается через кулачковую муфту, включение которой сблокировано с грубым привалом вальцов посредством рычагов и вилки.

Для автоматического регулирования подачи зерна (рис.) над дозирующим валиком 5 на шарнирах подвешена заслонка 1. Она соединена через рычаги, ролик, кронштейн и валик с датчиком 3 питания, выполненным в виде двух шторок.


Рис. Устройство автоматического регулирования подачи зерна

Для регулирования воздействия зерна и, следовательно, чувствительности сигнализатора предназначена пружина 6. Деформация последней изменяется перемещением гайки 7 относительно винта 8. Для станков драных систем (кроме I и IV мелкой) кромка заслонки зубчатая, для станков остальных систем - гладкая. Диапазон автоматического перемещения заслонки регулируют ограничительным винтом 2. В зоне поступления зерна (в горловине станка) установлен зонд 4.

Механизм настройки параллельности вальцов состоит из маховика 25, соединенного шпонкой с втулкой 26 (рис.).


Рис. Механизм настройки параллельности вальцов в вальцовом станке А1-БЗН

В ее резьбовое отверстие ввернут винт 27. Одним из торцов, имеющим прямоугольные направляющие, винт контактирует с роликом рычага 24, установленного на шипе эксцентрикового вала. К рычагу шарнирно закреплена подвеска 1.

На ней смонтированы предохранительные пружины 33, обеспечивающие безопасный проход между вальцами инородных тел диаметром до 5 мм. На верхний торец предохранительных пружин опирается свободный конец корпуса подвижных подшипников 31.

В состав устройства также входят: болты 9 и 10; ограничительный винт 11; рычаги 2, 3, 8, 13,14, 24; воздухораспределитель 15; ролик 16; кронштейн 17; винты 7,19, 27; гайка20, горловина22 станка; подшипники23, 32; боковина29 станины.

Механизм обеспечивает параллельное сближение вальцов после их настройки. Грубого привала вальцов достигают вращением эксцентрикового вала вручную (за рукоятку винта 7, соединенного с рычагами 2 и 3, образующими механизм параллельного сближения) или от штока пневмоцилиндра 34.

В первом случае защелка 6 на рычаге 2 зацепляется с упором 4 и обеспечивает приваленное положение вальцов. Во втором случае вращением эксцентрика 5 исключают зацепление защелки 6 с упором 4, а привал вальцов обеспечивают сжатым воздухом с номинальным давлением 5-10~ 5 Па. Рабочая полость пневмоцилиндра через электропневматический клапан 30 может соединяться с магистралью сжатого воздуха или атмосферой. Давление сжатого воздуха в цилиндре контролируют по манометру на пульте управления. Грубый отвал вальцов обеспечивают пружиной и массой нижнего вальца.

Сигнализатор уровня состоит из зонда, головки 21 и релейного блока 28. При наполнении зерном питающей трубы сигнализатор уровня позволяет обеспечить автоматическое включение грубого привала вальцов и вращение питающих устройств. Обратные процессы происходят также автоматически при прекращении поступления зерна в питающую трубу. Местное управление грубым привалом осуществляют двухходовым распределителем воздуха, рукоятка которого расположена на лицевой панели станка.

Сигнализацию холостого хода обеспечивает автоматическое загорание лампочки, находящейся на лицевой панели.

В процессе поступления зерна в питающую трубу изменяется электрическая емкость зонда 4. Емкость зонда преобразуется электрической схемой головки 21 в напряжение, которое управляет работой реле блока 28. Это обеспечивает срабатывание электропневматического клапана, приводной механизм которого соединяет магистраль сжатого воздуха с рабочей плоскостью пневмоцилиндра. Поршень перемещает шток вверх, а от него (через винт 7 и рычаги 2, 3) поворачивается эксцентриковый вал. Шипы последнего перемещают вверх рычаг 24, подвеску 1, предохранительную пружину 33 и свободные концы подвижных подшипников 32. Происходит привал вальцов. Одновременно рычаг 8 освобождает рычаг 14 и вилку 12.

Под действием пружины ведомая полумуфта кулачковой муфты входит в зацепление с ведущей полумуфтой и вращение через редукторы начинает передаваться следующим образом: в станках I драной системы - через промежуточный валик дозирующему; в станках с рифлеными вальцами остальных систем - шнеку и дозирующему валику; в станках с гладкими вальцами - дозирующему и распределительному валикам для подачи зерна на измельчение.

Под действием массы зерна, преодолевая сопротивление пружины 18, датчик 3 питания перемещает валик, рычаги, ролик. В результате через гайку и винт проворачивается заслонка 1 и в зазор между ней и дозирующим валиком поступает зерно. При уменьшении массы зерна, поступающего в питающую трубу, уменьшается давление на датчик. В результате под действием пружины 18 и собственной массы заслонка 1 опускается к дозирующему валику 5, уменьшая подачу зерна.

Если измельчение по концам вальцов неодинаковое, то вращением маховика 25 поднимают или опускают свободные концы корпусов подвижных подшипников, т. е. выравнивают рабочий зазор между вальцами. При прекращении поступления зерна в питающую трубу емкость зонда изменяется. При этом головка зонда и релейный блок размыкают цепь электропневматического клапана. В результате прекращается подача сжатого воздуха в пневмоцилиндр и под действием пружины через эксцентриковый вал соответствующие рычаги и винт происходит отвал вальцов.

На различных системах вальцы отличаются друг от друга по параметрам нарезки рифлей. Это обеспечивает высокую технологическую эффективность.

Кроме того, исполнение вальцовых станков отличается устройством подачи зерна, учитывающим его особенности, мощностью электродвигателей, типом очистителей. Наиболее нагружен электродвигатель вальцового станка на I драной системе. Его мощность 18,5 кВт. На последующих системах мощность электродвигателей уменьшается в соответствии с уменьшением количества измельчаемого продукта. К отличительным особенностям следует отнести разницу в конструкции капотов и диаметр приводных шкивов.

В процессе размола к рабочей поверхности вальцов прилипают лепешки измельченных частей зерна. Для очистки рифленых вальцов всех систем, кроме I, II драных; 12-й размольной, установлены щетки 30 из полимерного материала. Микрошероховатые вальцы и вальцы 12-й размольной системы очищаются ножами. Для улучшения условий запуска приводного электродвигателя необходимо, чтобы ножи соприкасались с поверхностью вальцов только после привала. Это достигается блокировкой перемещения ножей с поворотом эксцентрикового вала посредством тросов. Зазор между вальцами и ножами не должен превышать 0,02 мм.

Величину зазоров между приваленными вальцами проверяют на расстоянии 50...70 мм от их торцов (величина зазора должна составлять для I драной системы, мм: 0,8... 1,0; для II драной - 0,6...0,8; для III драной крупной - 0,4...0,6; для драной мелкой - 0,2...0,4; для рифленых вальцов размольных систем - 0,1...0,2; для гладких вальцов - 0,05). Зазоры между заслонкой и дозирующим валиком должны быть на драных системах не более 0,35 мм, на размольных - не более 0,15 мм. Зазоры между вальцами и ножами не должны превышать 0,02 мм.

Форма исполнения вальцовых станков включает следующие переменные параметры:

сочетание половин станка для определенной технологической системы;

характер рабочей поверхности мелющих вальцов (параметры рифления или микрошероховатости);

отношение окружных скоростей мелющих вальцов - дифференциал (2,5 или 1,25);

способ очистки мелющих вальцов (нож, щетки);

варианты устройства механизма подачи исходного продукта (тип валкового питателя, наличие редуктора, кромка заслонки, диаметры шкивов плоскоременной передачи);

мощность электродвигателя каждой половины станка; диаметры приводных шкивов (150 и 132 мм); вариант установки электродвигателя (на перекрытие или под ним); способ капотирования вальцовых станков (групповой, индивидуальный). Настройка и регулирование станка заключаются в следующем. До пуска вальцового станка проверяют: наличие смазки, работу привально-отвального механизма, отсутствие заклинивания вальцов (при вращении их вручную); крепление резьбовых и других соединений; правильность установки и равномерность рабочего зазора между приваленными неподвижными вальцами на расстоянии 50...70 мм от их торцов; перемещение очистителей вальцов при привале-отвале; состояние приводных ремней.

При работе вальцового станка под нагрузкой проверяют: работу привала привально-отвального механизма от пневмопереключателя, от системы местного и дистанционного управления, в автоматическом режиме; блокировку включения питающих валков и перемещения заслонки; нагрев подшипников (температура не более 60 °С); работу электросхемы и аппаратуры, подачу воды, работу подводящих и отводящих коммуникаций и транспортных устройств.

Настройка и оперативное регулирование режима размола каждой половины станка под нагрузкой сводится в основном к регулированию системы питания и рабочего зазора между мелющими вальцами.

У станков, имеющих в механизме питания редуктор, устанавливают вначале минимальную скорость дозирующего валка и далее подбирают оптимальную скорость вращения. Не допускается переключение скоростей на ходу.

В соответствии с распределением нагрузок по технологическим системам с помощью регулятора вручную устанавливают минимальную величину питающего зазора между заслонкой и дозирующим валком: на драных системах - 0,35 мм, на размольных - 0,15 мм. Максимальный питающий зазор, устанавливаемый ограничительным винтом, должен обеспечивать верхний предел подачи исходного продукта, при котором токовая нагрузка электродвигателя по показаниям амперметра не превышала бы 80 % номинальной. Если это условие не соблюдается, питающий зазор должен быть уменьшен.

Регулирование системы питания и рабочего зазора следует проводить с постоянным контролем нагрузки электродвигателя, а также подводящих и отводящих транспортных систем.

На станках размольных систем визуально проверяют равномерность распределения продукта по длине распределительного валка. На каждой половине вальцового станка проверяют извлечение, которое должно соответствовать действующим Правилам.

При настройке режима размола проверяют чувствительность автоматической системы регулирования подачи исходного зерна в установленном диапазоне, расположение конуса продукта в приемной трубе относительно чувствительного элемента сигнализатора уровня.

После настройки режима размола должны быть затянуты контровочные устройства органов регулирования. В дальнейшем для данной помольной партии не следует корректировать режим помола, который должен обеспечивать стабильные результаты в течение длительного времени.

Отличительные особенности вальцовых станков типа А1-БЗН от ранее выпускаемых отечественных моделей состоят в следующем:

вальцы изготовляют пустотелыми, что снижает металлоемкость станков; улучшены условия питания;

наличие водяного охлаждения быстровращающихся вальцов создает стабильный тепловой режим в зоне измельчения, что благоприятно сказывается на количественно-качественных показателях процесса измельчения, одновременно охлаждаются подшипники;

совокупность конструктивных особенностей, высокой точности обработки, применение износостойкого рабочего слоя вальцов существенно повышает их долговечность: рифленых - до трех лет, гладких - до десяти лет;

автоматическая система привала-отвала нижнего вальца сблокирована с системой управления подачей исходного продукта, что позволяет дистанционно управлять станком, обеспечивая стабильность и надежность его работы;

применение конической посадки подшипников позволяет производить демонтаж их гидравлическим съемником. Наличие горизонтального разъема в корпусе подшипников дает возможность снимать их вместе с подшипниками. Значительно снижается трудоемкость этой операции;

в формах исполнения вальцовых станков с большим количеством переменных параметров максимально учтена специфика каждой технологической системы;

наличие трех моделей вальцовых станков: А1-БЗН, А1-БЗ-2Н и А1-БЗ-ЗН - повышает их ууниверсальность и область использования.

Техническая характеристика станков типа А1-БЗН

Производительность, т/сут..........84

Расход воды на охлаждение половины станка, м 3 /ч, не более...............0,3

Частота вращения быстровращающихся вальцов, мин -1:

рифленых..........................420...460

гладких.............. 395...415

Давление сжатого воздуха, МПа........0,5

Расход воздуха на аспирацию для вальцового станка А1-БЗ-2Н, м 3 /мин, не более.........10

Расход воздуха на пневмотранспорт для половины вальцового станка А1 -БЗ-ЗН, м 3 /мин, не более.......0,3

Мощность электродвигателей, кВт, для систем:

I драной..............18,5

II драной, 1 -й и 2-й размольных.......15

III драной, 1-й и 2-й шлифовочных, 3,4,6,8,9,10-й размольных..............11

IV драной,5...12-йразмольных.......7,5

Габаритные размеры, мм, не более............1800х 1700х 1400

Масса, кг (без электропривода, капотов и электроаппаратуры) ...........2700

Описание:


Вальцевые станки А1-БЗН, А1-БЗ-2Н, А1-БЗ-3Н. Вальцовый станок А1-БЗН предназначен для измельчения зерна и промежуточных продуктов размола пшеницы и применяется в составе комплекта оборудования на мукомольных предприятиях с увеличенным выходом муки высоких сортов.Станки состоят из двух автономных половин. Основными рабочими органами вальцовых станков являются две пары диагонально расположенных мелющих вальцов. В зависимости от технологического назначения рабочая поверхность мелющих вальцов выполняется рифленой или гладкой. Конструкцией станков предусмотрено водяное охлаждение быстровращающихся мелющих вальцов и возможность перенарезки рифлей без демонтажа подшипников. Дистанционное управление привалом и отвалом мелющих вальцов позволяет стабилизировать режим помола и практически устраняет вмешательство обслуживающего персонала в работу вальцовых станков.В зависимости от технологического назначения рабочая поверхность мелющих вальцов станков А1-БЗН, выполняется рифленой или гладкой. Конструкцией станков предусмотрено водяное охлаждение быстровращающихся мелющих вальцов и возможность перенарезки рифлей без демонтажа подшипников.

Дистанционное управление привалом и отвалом мелющих вальцов станков А1-БЗН, позволяет стабилизировать режим помола и практически устраняет вмешательство обслуживающего персонала в работу вальцовых станков;

Вальцевые станки типа А1 – БЗН – это наиболее распространённая измельчающая машина российских мукомольных заводов. В зависимости от модификации и формы исполнения станки А1-БЗН могут отличаться друг от друга. Основными отличительными признаками станков типа А1 – БЗН -является расположение привода под межэтажным перекрытием или на том же этаже, где расположен станок; способ вывода измельчённого продукта – с нижним забором – самотёком и верхним забором – в стояки пневмотранспортных установок; рельеф поверхности вальцов – с рифлями или микрошероховатостью; тип применяемого сигнализатора уровня и др. Вальцовый станок типа А1-БЗ-2Н имеет две пары мелящих вальцов, расположенных наклонно (под углом 300) к горизонту. Длина вальцов 1000 мм, а диаметр бочки 250 мм. Вальцы имеют водяное охлаждение с полной или частичной рециркуляцией. Очистка вальцов от налипшего продукта осуществляется или ножом для микрошероховатых вальцов, или щёткой для рифленых. Измельчённый продукт выводятся из станка через выпускное устройство, включающее бункер или пневмоприёмник. Привод быстровращающегося вальца осуществляется от электродвигателя через клиноремённую передачу, а медленновращающегося вальца осуществляется от быстровращающегося через косозубую передачу, обеспечивающую отношение окружных скоростей 1,25 или 2,5. Управление механизмами регулирования межвальцового зазора и выведено на переднюю панель. При этом привал и отвал вальцов может осуществляться как вручную, так и в автоматическом режиме. Для реализации последнего служит сигнализатор уровня, блок питания и преобразования сигналов, исполнительный механизм – пневмоцилиндр, управляемый электромагнитным клапаном. Питание продуктом каждой половины станка автономное.

Персонал, обслуживающий станок А1-БЗН, должен быть подробно ознакомлен с правилами эксплуатации и ухода за станком, а также пройти инструктаж по безопасным методам работы.

Помещение, в котором устанавливается станок А1-БЗН, должно соответствовать классу В11-а.

Эквивалентный уровень шума не должен превышать 80 дБ, а эквивалентное значение виброскорости – 92дБ.

По результатам заводских и производственных испытаний принято решение о начале серийного производства с января 2006 года модернизированного вальцового станка типа Р6-БЗН-М.

Внешний вид станка стал новым и более эргономичным. Горловина, приемный стакан, крышки капотов, фортки и ограждения станка Р6-БЗН-М приобрели новые очертания, соответствующие современному дизайну, благодаря используемой технологии порошковой окраски.

Помимо улучшения дизайна станка Р6-БЗН-М конструктивно изменился и ряд узлов.

Вместо зубчатой межвальцовой передачи установлена межвальцовая передача с применением зубчато-поликлиновых ремней, что резко снижает шум и обеспечивает плавность зацепления.

Существующее устройство подачи исходного продукта заменено на питающий механизм с системой автоматического регулирования скорости вращения питающих валиков, что обеспечивает стабильный уровень продукта в питающем цилиндре станка Р6-БЗН-М и исключает отвалы при существенных колебаниях подачи продукта на станок.

Вместо существующей пневмосистемы установлена пневмосистема фирмы «Камоцци» (Италия), что повышает надежность и увеличит срок работы элементов пневмосистемы.

Станок Р6-БЗН-М укомплектован мелющими вальцами повышенной износостойкости с увеличенным ресурсом работы.

Введение АСУ для модернизированных станков А1-БЗ-3Н дало возможность ввести систему бесступенчатого регулирования скорости питающих валков, систему контроля силы тока приводов, а также вести дополнительный контроль за вращение питающих валков.

Краткое описание:

На станке Р6-БЗН-М устанавливается программируемый контроллер, на базе микросхемы Р1С16F877, который дает возможность контролировать все параметры станка и технологического процесса.

Для контроля параметров оборудования на станке, устанавливаются ряд датчиков:

на двигателе привода мелющих валков – датчик контроля тока СУ-1Т;

в качестве сигнализатора уровня применен датчик СУ-1М-1-1; датчики (верхний, средний и нижний) устанавливаются снаружи смотрового цилиндра. Выведенный на лицевую панель подстроечный резистор позволяет регулировать чувствительность в зависимости от фракции продукта;

внизу на боковине вальцевого станка устанавливается датчик подпора, для контроля за подвальцевым пространством;

на редукторе питающих вальцов устанавливается датчик вращения БВК-М;

на боковине вальцевого станка устанавливается пульт оператора (ПО) с цифровой индикацией, куда выводится вся информация от датчиков и состояния частотный преобразователей.

Эти усовершенствования выводят станок А1-БЗ-3Н на уровень ведущих зарубежных производителей аналогичного оборудования, позволяют стабилизировать выход и качество готовой продукции, упростить обслуживание, сократить число аппаратчиков мукомольного производства, оптимизировать производительность. Сигнализатор уровня СУ – 1М-2-1 используется в станках мукомольных серии А1БЗН, для управления привалом валков и соответствует техническим условиям ТУ У 13342156.002-97.

Конструкция:

Сигнализатор состоит из блока питания и исполнительной схемы, размещенных в одном корпусе, а также двух датчиков – верхнего и нижнего, выполненных в отдельных корпусах и оборудованных чувствительными элементами (антеннами), представляющими собой металлические ленты с эластичными замками. Все составные блоки сигнализатора СУ – 1М-2-1 соединяются между собой трехжильным проводом с двойной изоляцией, с использованием уплотнительных элементов. Отличительные особенности:

Сигнализатор выгодно отличается от аналогов как конструкцией, так и по своим техническим параметрам:

установка датчиков производится вне рабочего пространства станка;

контроль наличия продукта осуществляется без физического контакта с продуктом;

упрощен доступ к датчикам для проведения наладочных работ;

наличие световой индикации облегчает настройку;

применяемая схема в значительной мере не чувствительна к изменениям влажности и плотности контролируемого продукта, что делает ненужным частую переналадку сигнализатора.

Принцип работы-

При достижении продуктом нижнего уровня цилиндра, срабатывает нижний датчик и подготавливает цепь для включения исполнительной схемы, при достижении продуктом верхнего уровня цилиндра, срабатывает верхний датчик и включается исполнительная схема. Валки приваливаются, идет помол продукта, при понижении уровня продукта ниже верхнего датчика, последний отключается, помол продукта продолжается. При понижении уровня продукта ниже нижнего датчика, последний отключается и отключает исполнительную схему, валки отваливаются, помол продукта прекращается. При заполнении цилиндра цикл повторяется.

Инструкция по капитальному ремонту вальцового станка А1-БЗН, А1-БЗ-2Н, А1-БЗ-3Н

I. Разборка вальцевого станка А1-БЗН

1. Снять все съемные капоты и ограждения

2. Удалить остатки продукта из всех полостей с использованием сжатого воздуха

3. Слить масло из всех заправочных емкостей

4. Разобрать узлы крепления валов

5. Демонтировать валы

6. Снять подшипники с валов

7. Разобрать механизм привала и механизм параллельного сближения валов

8. Разобрать механизм привода питающего валика

9. Разобрать привода автоматического регулирования заслонки

10. Демонтировать рычаги

11. Рассверлить отверстия и нарезать резьбу (M 10х1.0) под масленку и установить в рычагах нижнего вала

12. Вымыть станину станка А1-БЗН (соляром) и вытереть насухо ветошью

13. Промыть все снятые детали (соляром) и насухо вытереть ветошью

14. Разложить все демонтированные детали на бумаге

15. Предъявить вальцевой станок А1-БЗН в разобранном виде заместителю начальника цеха по ремонту

II. Выполнить все работы по предварительной дефектной ведомости и дефектовке в разобранном виде

III. Заменить в обязательном порядке

1. Пыльники и манжеты цилиндров привала

2. Деревянные вставки между валами

3. Резиновые уплотнения картера межвальцовой передачи

4. Войлочные пыльники валов.

IV. Сборка

1. Собрать подшипниковые узлы валов с использованием смазки Литол-24 и заполнением на 75%

2. Затянуть упорные гайки подшипников с достаточным усилием

3. Собрать боковые крышки питающего валика с использованием герметика

4. Собрать механизм «привала-отвала»

5. Установить валы на станок А1-БЗН

6. Затянуть упорные гайки подшипников, контролируя зазор (0.035). По щупу в двух точках на горизонтальной оси подшипника

7. Шкивы и шестерни установить на место при помощи легкого постукивания молотком. При необходимости, задиры и неровности на посадочных местах выровнять бархатным напильником

8. Произвести окончательную сборку.

V. Смазка вальцевого станка А1-БЗН

1. Залить смазку (индустриальное, компрессорное КС-19) в картер межвальцовой передачи со снятой верхней крышкой, при этом зеркало смазки должно касаться 2-x, 3-х, зубьев нижней шестерни

2. Установить верхнюю крышку картера на герметик

3. Залить масло (КС-19) в картер привода питающего вальца

4. Прошприцевать смазкой (Литол-24 в 5-ти местах); рычаги нижнего вала механизм «привала-отвала»

VI. Регулировка вальцевого станка

1. Установить рукоятку механизма точной настройки в среднее положение

2. Установить штурвалы механизма параллельности валов в среднее положение

3. Установить щуп между валами и, регулируя гайку, добиться легкого защемления щупа, при этом следить, чтобы длины свободной резьбовой части были одинаковой и составляли 15мм

4. Сжать пружины механизма « привала-отвала» и обеспечить зазор между витками 1,2мм

5. Отрегулировать по щупу питающую заслонку (два одинаковых щупа шириной – 50мм, толщиной – 0,5мм)

6. Проверить параллельность валов при помощи щупа: драные системы – 0,5мм размольные системы – 0,2мм

VII. Испытание и сдача вальцового станка А1-БЗН

1. Проверить от руки легкость хода станка А1-БЗН

2. Установить ремни одинаковой длины, не допуская перекоса, произвести их натяжку с усилием 3-4 кг приложенных в средней части ремня и отклонением 30-40мм

3. Включить станок А1-БЗН для обкатки на холостом ходу

4. Нанести шероховатость на станках А1-БЗН размольных систем

5. Тщательно удалить остатки абразивной пыли

6. Остановить станок А1-БЗН убрать излишки смазки, проверить валы, отмыть наружную поверхность станков водой с порошком

7. Убрать за собой место проведения работ

8. Предъявить станок А1-БЗН заместителю начальника цеха по ремонту

Информация по ремонту вальцовых станков типа А1-БЗН, А1-БЗ-2Н, А1-БЗ-3Н

ОАО «Могилёв-Подольский машиностроительный завод им. С.М.Кирова» предлагает поставить ремонтные комплекты для улучшения вальцовых станков типа А1-БЗН, А1-БЗ-2Н, А1-БЗ-3Н которые предусматривают:

· замену устройства подачи исходного продукта на питающий механизм с установкой системы автоматического регулирования скорости вращения питающих валиков;

· замену зубчатой межвальцовой передачи на межвальцовую передачу с применением зубчато-поликлиновых ремней;

· замену существующей пневмосистемы на пневмосистему фирмы «Камоцци».

1. Питающий механизм с индивидуальным приводом питающих валиков оснащен автоматизированной системой управления, выполняющей следующие функции: – плавное регулирование скорости подачи продукта на мелющие вальцы, что практически делает станок А1-БЗН самоналаживающимся и исключает резкие колебания нагрузки на рассев как в процессе запуска и наладки мельницы, так и в процессе ее работы;

Отслеживание рабочего тока главного двигателя и обеспечение его токовой защиты;

Обеспечение автоматического отвала станка А1-БЗН в случаях накопления продукта в стакане станка А1-БЗН, подпора в воронке, а также в случае аварийной остановки питающих вальцов.

При этом, в зависимости от индивидуального требования заказчика, предусмотрено два варианта системы управления с возможностью реализации как цифрового, так и аналогового принципа.

В системе управления, основанной на аналоговом принципе, применяется контроллер «Mitsubishi», ЧПД производства «Данфосс», а также отечественные датчики. Второй вариант системы управления, базирующийся на цифровом принципе, сконструирован на основе элементной базы украинских производителей.

Для установки питающего механизма Р6-БЗН-М 01.00.000 соответствующего исполнения на одной половине станка необходимо предварительно демонтировать:

левую и правую опоры устройства подачи исходного продукта (в зависимости от исполнения),

БЗН 01.013 Шкив,

БЗН 01.220 Рычаг,

БЗН 01.042 Гайка,

БЗН 01.066 Рычаг,

БЗН 01.056 Кронштейн,

БЗН 01.082 Пружина,

БЗН 01.014 Шпилька,

БЗН 10.000 Валик дозирующий, (в зависимости от исполнения),

БЗН 25.000 (01.146)Валик дозирующий, (в зависимости от исполнения),

БЗН 26.000 (01.155) Валик распределительный, (в зависимости от исполнения),

БЗН 12.000 Шнек (в зависимости от исполнения).озможно с

Возможно использование имеющихся валиков при условии доработки цапф на месте

2. Замена межвальцовой зубчатой передачи на ременную имеет целью исключить шум, возникающий при работе зубчатой пары, а также масляные подтеки редукторов. Зубчато-поликлиновая межвальцовая передача удобна в обслуживании, обеспечивает плавность зацепления, долговечна в работе (срок службы поликлинового ремня 2,5 года).

Для установки межвальцовой ременной передачи Р6-БЗН-М 02.00.000 соответствующего исполнения необходимо демонтировать картер, крышку, шестерни.

На боковине станины необходимо фрезеровать базовую плоскость для установки натяжного шкива.

3. Замена существующей пневмосистемы на пневмосистему фирмы «Камоцци» (Италия) предназначена для повышения надежности и увеличения ресурса работы элементов пневмосистемы.

При переходе на пневмосистему «Камоцци» необходимо демонтировать:

Пневмораспределитель П-РЭ 3/2,5-1126 ТУ2-053-1612-82;

А1-БЗН 01.700 Пневмопровод;

А1-БЗН 01.147 –01 Штуцер………………………………………………….1шт;

ФВ 6-02 Фильтр воздуха………………………………………………………1шт;

А1-БЗН 01.148 –01 Штуцер………………………………………………….1шт;

А1-БЗН 01.148 Штуцер……………………………………………………….1шт;

Контргайка ф15 ГОСТ 8968-75……………………………………………….1шт;

А1-БЗН 05.030 Цилиндр………………………………………………………1шт;

На боковине станка А1-БЗН необходимо установить пневмосистему, состоящую из следующих узлов и деталей:

Фитинг «Sprint» модели 1541-6/4-1/8 …………………………………………….1шт;

Фитинг «Sprint» модели 1511-6/4-1/8…………..……………………………..….1шт;

Трубный фитинг «Sprint» модели S2500-1/8……………………………….……1шт;

Универсальный фитинг «Sprint» модели 1050-6-1/8…………………………..1шт;

Пневмораспределитель А 331-1G2-А7Е-1/8-Н3…………………………………1шт;

Коннектор для катушек PG 9 модели 122-800 (PG9)DIN №43650………….1шт;

Фильтр модели N 208-F00 (1/8)…………………………………………… .1шт;

Трубка рилсановая TRN 6х4……………………………………………… 1шт;

Пневмоцилиндр Camozzi 2702A63A0080C01……………………………………1шт;

Кронштейн Р6-БЗН-М 10.00.001……… ………………………………… 1шт;

Ось Р6-БЗН-М 10.00.002……………………………………………………….1шт;

Фланец Р6-БЗН-М 10.00.003…….……………………………………………..1шт.


Технические характеристики



Чертеж



00.003.01 обечайка

00.004 кольцо

00.006 кольцо

00.002 уплотнение

00.011 цилиндр Ф 65 исп.00

00.011 цилиндр Ф 70 (-01)

00.011 цилиндр Ф 75 (-02)

00.011 цилиндр Ф 80

00.011 цилиндр Ф 85 (-3)

00.011 цилиндр Ф 90 (-04)

00.011 цилиндр Ф 95 (-5)

00.011 цилиндр Ф 100

00.011 цилиндр Ф 110 (-07)

00.011 цилиндр Ф 120

00.011 цилиндр Ф 130 (-08)

00.011 цилиндр Ф 140

00.012 кольцо

00.014-00,-01,-04,-10,-11 планка

00.050. 00,01 капот

00.050.02 капот

00.050.03 капот

00.051 ручка

00.100.01,-01 крышка

00.100.02 крышка

00.100.03 крышка

00.101 планка

00.102 подпорка

00.103-01,02,03 скоба

00.130-02 уголок

00.160 уст.охлажд.

00.161 корпус

00.162 колено

00.164 угольник

00.165.01 прокладка

00.166 гайка

00.170 труба

00.171 штуцер

00.172 труба

00.180 крышка

00.190 крышка

00.200 крышка

00.210 крышка

00.221.01 гайка

00.222.01 прокладка

00.223 муфта

00.225 муфта

00.250 крышка

00.300 капот

00.400.01 кронштейн

00.420.01 опора

00.421 стержень

00.500 -01 кронштейн

00.540 накладка

00.550 перегородка

00.580 заглушка

00.590 перегородка

01.002.01 накладка

01.003 плита

01.004 плита

01.005 корпус

01.006 крышка

01.007.01 корпус

01.008 крышка

00.001 цил.295х400

01.012 насадка

01.012.01 насадка

01.013.01 шкив

01.014 шпилька

01.015 корпус с кр.01.019

01.015.01 корпус с кр.01.019

01.016,-01 корпус

01.017 крышка

01.018 крышка

01.021 крышка

01.023 шкив БЗН (6-ти руч.)

01.023-03 (3-х руч.)

01.023-01 (2Н,3Н) 3-х руч.

01.024 маховичок

01.026 втулка

01.027 втулка

01.028 зажим

01.029 кольцо

01.031 втулка

01.032 цапфа

01.033 втулка

01.034 крышка

01.035 кронштейн

01.037 шестерня

01.037.01 шестерня

01.037.02 шестерня

01.037.03 шестерня

01.037.04 шестерня

01.037.05 шестерня

01.037.06 шестерня

01.037.07 шестерня

01.037.08 шестерня

01.037.09 шестерня

01.037.10 шестерня

01.037.11 шестерня

01.037.12 шестерня

01.037.13 шестерня

01.037.14 шестерня

01.037.15 шестерня

01.038 шестерня

01.038.01,02 шестерня

01.038-04 шестерня

01.039 шестерня

01.039.01 шестерня

01.041 шайба

01.042 гайка

01.043 шайба

01.046 колодка

01.047 пружина

01.048 прокладка

01.049 опора

01.051 прокладка

01.054 планка

01.056 кронштейн

01.057 рычаг

01.059 рычаг

01.061 рычаг

01.062 кронштейн

01.063 шайба

01.064 втулка

01.065.01 пружина

01.066 рычаг

01.067 заглушка

01.069 опора

01.071 палец

01.072 палец

01.073 пружина

01.074 кольцо

01.076 вал эксц.

01.077 кронштейн

01.078 цапфа

01.079 опора

01.081 втулка

01.082 пружина

01.083 кронштейн

01.085 шайба

01.088 опора

01.094 штифт

01.093 кольцо

01.095 кольцо

01.095.01 кольцо

01.096 планка

01.097 шестерня Z 57, 58

01.098 шестерня Z 22

01.098.01 шестерня Z 36

01.098.02 шестерня Z 44

01.098.03 шестерня Z 32

01.098-04 шестерня

01.101 пружина

01.102 пружина

01.105 шайба

01.106 ролик

01.107 накладка

01.110 вставка

01.113 вставка

01.120 угольник

01.130 вилка

01.131 вилка

01.132 стержень

01.140 винт с рычаг.

01.142 втулка

01.143 рычаг

01.145 гайка

01.146 валик дозир.

01.148 переходник

01.155 валик распред.

01.156 ремень

01.156.01 ремень

01.156.02 ремень

01.156.03 ремень

01.160 вал с п/м

01.165.01 шпонка

01.165 шпонка

01.200 блок.шест.

01.201 шестерня

01.202.01 шестерня

01.201.02,03 шестерня

01.202 шестерня

01.203 валик

01.204 рейка

01.205 шпонка

01.206 пружина

01.207 кольцо

01.208 корпус

01.210 блок.шест.

01 211 шестерня

01.211.02 рычаг

01.212 шестерня

01.220 рычаг

01.270 вставка

01.271 вкладыш

01.280 рычаг

01.281 рычаг

01.290 мостик

01.300 подвеска

01.302 шпилька

01.310 рычаг

01.320 рукоятка

01.321 корпус

01.350 рукоятка

01.360 мех.парал.сближ.

01.361 рычаг

01.362 рычаг

01.363 сухарь

01.364 рукоятка

01.367 пружина

01.368 втулка

01.373 втулка

01.374 штифт

01.380 защелка

01.381 пружина

01.382 защелка

01.390 переключатель

01.391 ручка

01.400 эксцентрик

01.401 эксцентрик

01.410 крышка

01.412 пружина

01.414 ручка

01.420 пневмопровод

01.430 рычаг

01.431 рычаг

01.432 ролик

01.440 ручка

01.450 датчик

01.451 стержень

01.452 шторка

01.453 стержень

01.454 валик

01.460 блок.шест.

01.460.01 блок.шест.

01.461 валик

01.462 шестерня

01.462.01 шестерня

01.462.02 шестерня

01.462.03 шестерня

01.463 шайба

01.463.01 шайба

01.480 щиток

01.485 ручка

01.490 ролик

01.510 ограждение

01.520 крышка

01.530 пневмопровод

01.550 стойка

01.551 планка

01.560 заслонка

01.580 пит.заслонка

01.590 хомут

01.600 шестерня

01.601 шестерня

01.602 пластина

01.603 рукоятка

01.604 штифт

01.620 перегородка

01.621.01 перегородка

01.605 штифт

01.640 перегородка

01.680 кронштейн

01.700 пит.труба

02.000/1000 станина

02.000-22/600 станина

02.002 стенка

02.001 боковина

02.003 седло

02.004 втулка

02.005 втулка

02.015 щиток

02.038.03 шестерня

02.462.01 шестерня

03.000 кожух

03.001 картер

03.002 крышка

03.003 втулка

03.004 пробка

03.005 прокладка

03.006 пробка

03.007 шайба

03.008 втулка

03.009,010 крышка

04.001 крышка

04.002 заглушка

04.004 шайба №65

04.010 уплотн.

05.000 пневмоц.

05.002 кольцо

05.003 вилка

05.004 крышка

05.005 втулка

05.006 сильфон

05.007 пружина

05.008 хомут

05.009 основание

05.013 манжет

05.021 поршень

05.022 труба

05.030 цилиндр

06.000 фортка

06.001 пружина

06.002 штырь

06.004 штифт

06.005 фортка

06.006 шайба

06.007 вставка плоская

06.011 подпорка

06.012 стойка

06.020 рамка

07.000 горловина

07.000-03 горловина

07.003 шпонка

08.000 очиститель

08.001 каркас

08.001-03 каркас (600)

08.010 -1000 щетка

08.010 - 800 щетка

08.010 -600 щетка

09.000 воздухор.

09.050 ручка

10.000.00 валик доз.

10.000.02 валик доз.

10.000.03 валик доз.

10.000.04 валик доз.

10.001 цапфа

12.001.01 вал

12.002.01 кольцо

12.010.02 перо

13.000 привод

13.001 шкив 6-ти ручейный Ф156

13.001 А шкив 3-х руч. Ф190

13.001.01 шкив 6-ти руч. Ф156

13.001.01А шкив 3-х руч.

13.001.02 шкив 6-ти руч. Ф156

13.001.02А шкив 3-х руч. Ф190

13.001.03 шкив 6-ти руч. Ф138

13.001.03А шкив 3-х руч. Ф190

13.001.04 шкив 6-ти руч.Ф138

13.001.04А шкив 3-х руч. Ф170

13.001.05А шкив 3-х руч. Ф170

13.002 плита

13.003 шпилька

14.000 дверка

14.001 ручка

14.002 язычок

14.004 фартух

14.010 дверка

14.020 гайка

15.000 очиститель

15.000-03 очиститель

15.000-02 очиститель

15.001 каркас

15.001-03 каркас (600)

16.000 очиститель нож.

16.000-02 очиститель нож.

16.000-03 очиститель нож.

16.001 каркас

16.001-03 каркас (600)

16.002 (1000)нож

16.002 (800) нож

16.002 (600) нож

16.003 накладка

16.004 крючок

17.000 коробка клем.

17.013 шайба

17.014 прокладка

17.015 прокладка

18.000 лампа сигнальная

19.000 коробка клемн.

20.010 пневмопровод

20.012 переходник

20.051 шестерня Z 56

20.051.01 шестерня Z 43

20.051.02 шестерня Z 35

20.051.03 шестерня Z 34

20.051.04 шестерня Z 33

20.052 шестерня Z 21

20.052.01 шестерня Z 20

20.053 шестерня Z 46

20.053-01 шестерня Z 47

20.054 шестерня Z 30

20.054-01 шестерня Z 31

21.010 пневмопровод

22.002 ремболт

22.010 съемник гидр.

22.018 уплотнение

22.020 съемник гидр.

22.031.01 ключ

22.031.02 ключ

22.031.03 ключ

22.050 присп.д/замен. валк.

22.060 рычаг

22.070 ключ.труба

Щуп для устан.зазора

Плита на параллельность

ЗИП (А1-БЗ-2Н,-3Н)

Р6-БЗН-М 10.00.001 кронштейн

Р6-БЗН-М 10.00.002 ось

Р6-БЗН-М 10.00.002 фланец

00.550.02 перегородка

00.590 перегородка

00.600 переходник

00.600.03 переходник

00.600.07 переходник

00.600.08 переходник

00.630.14 перегородка

00.630.15 перегородка

00.640 заборник

00.640.04 (-02) заборник

00.640.12 (06,05) заборник

00.680 (-02) труба

00.680.04 труба

00.680.12 (-05,06) труба

00.690.01 перегородка

00.700.05 воронка

00.740.03 колпак

02.030 перегородка с труб.

02.030.03 перегородка с труб.

02.030.07 перегородка с труб.

02.030.10 перегородка с труб.

02.080.04 перегородка

02.080.14 перегородка

02.013.06 планка

01.640.03 перегородка

01.620 перегородка

Комплект пневмоприемн. Ф130

Комплект пневмоприемн. Ф75

Комплект пневмоприемн. Ф65

Комплект пневмоприемн. Ф 110/95

Комплект пневмоприемн. Ф 90/90

Комплект пневмоприемн. Ф 75/75


Вальцовый станок А1-БЗН, станок А1-БЗН, станок вальцевый, станок вальцовый, станок вальцевый БЗН, вальцевый, вальцовый, станок вальцевый БЗН, станок вальцовый БЗН, станок вальцевый БЗ-2Н, станок вальцовый БЗ-2Н, станок А1-БЗ-2Н, БЗ-2Н, станок вальцевый А1-БЗ-2Н, станок вальцовый А1-БЗ-2Н, станок БЗ-2Н, станок БЗ2Н, станок А1-БЗ2Н, станок вальцовый БЗ-3Н, станок вальцевый БЗ-3Н, станок вальцовый А1-БЗ-3Н, станок вальцевый А1-БЗ-3Н, А1-БЗ-3Н,БЗ3Н, станки, валы, вальцы, вальцевый, станок А1-БЗ-3Н, БЗ-3Н, вальцовый станок Р6-БЗН-М, станок Р6-БЗН-М, БЗН-М, станок вальцевый А1-БЗ-3Н, БЗ-2Н, А1-БЗ-2Н, А1-БЗН, А1-БЗ-3Н, станок А1-БЗ-2Н, станок А1-БЗН, станок А1-БЗ-3Н, станок вальцевый А1-БЗ-2Н, станок вальцевый А1-БЗН, станок вальцевый А1-БЗ-3Н, вальцевый станок А1-БЗ-2Н, вальцевый станок А1-БЗН, вальцевый станок А1-БЗ-3Н

Вальцовый станок А1-БЗН, А1-БЗ-2Н, А1-БЗ-3Н.

Станки А1-БЗН могут обладать гладкой или рифлёной рабочей поверхностью в зависимости от назначения оборудования. Конструкция устройств предусматривает наличие водяного охлаждения мелющих быстроразвивающихся вальцов. Ещё одной особенностью данного оборудования является возможность выполнить перенарезку рифлей без применения демонтажа подшипников.

Стабильность режима помола достигается за счёт дистанционного управления отвалом и привалом. Станок практически не требует вмешательства персонала в его работу.

Вальцовый станок БЗН сегодня входит в число самого распространённого отечественного оборудования из числа устройств, комплектующих мукомольные заводы. Станки обладают различными модификациями и назначениями, которые могут влиять на их отличия. Одной из наиболее значимых черт является расположение привода. В зависимости от модификации привод может находится под межэтажными перекрытиями или на том же этаже, где располагается и сам станок. Также станки могут различаться способами вывода измельченного продукта и рельефами рабочих поверхностей.

В компании «Агромаш» Вы также можете приобрести вальцы (валки) БЗН , а также другие запчасти, которые всегда имеются в наличии. Проконсультируйтесь с нашими специалистами — они всегда предоставят Вам достоверную и исчерпывающую информацию по всем видам продукции. Для приобретения станков, вальцев и валков БЗН и другого оборудования позвоните по т. 8-831-430-18-24

Вальцовые станки типа A1-БЗН выпускают в трех модификациях, для различных мукомольных заводов. Станки устанавливают группами по четыре-пять машин с общими капотами. Набор станков различной формы исполнения и последовательность их монтажа в каждой группе регламентированы проектом типового мукомольного завода. Характерно, что электродвигатели этих вальцовых станков размещают на специальной площадке под междуэтажным перекрытием.

Вальцовый станок типа A1-БЗН имеет 21 форму исполнения.

Вальцовый станок А1-БЗ-2Н используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка ЗМ-2. Станок А1-БЗ-2Н отличается от станка AI-БЗН наличием индивидуальных капотов и возможностью установки электродвигателя на том же перекрытии, где расположен станок, а также под перекрытием на специальной площадке. Станок имеет 39 форм исполнения.

Вальцовый станок A1-БЗ-ЗН используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка БВ-2.

Он отличается от описанных выше станков наличием устройства для верхнего забора измельченного продукта. Это устройство состоит из приемных труб для отсоса продукта непосредственно после измельчения из бункеров под вальцами, системы пневмотранспорта. Вальцовый станок А1-БЗ-ЗН имеет 22 формы исполнения.

Вальцовый станок А1-БЗН состоит из следующих основных сборочных единиц: мелющих вальцов, привода вальцов, меж-вальцовой передачи, механизмов настройки и параллельного сближения вальцов, системы привала - отвала вальцов, приемно-питающего устройства и станины.


1 - приемная труба; 2 - сигнализатор уровня продукта; 3 - заслонка; 4 - винтовое устройство; 5 - рукоятка; 6 - штурвал; 7 - стопорная головка; 8 - нож-очиститель; 9 - выпускной бункер; 10 - щетка-очиститель; 11, 12 - медленно-и быстровращающиеся вальцы; 13 - питающий валок; 14 - шнек; 15 - шторки-датчики

Мелющие вальцы устанавливаются парами в обеих половинах станка. Причем линия, соединяющая центры торцевых окружностей вальцов, образует угол 30° с горизонталью. Длина вальца - 1000 мм, а номинальный диаметр бочки - 250 мм. Масса полого вальца примерно на 30% меньше цельного - 270 кг.
Валец представляет собой двухслойную полую цилиндрическую бочку, диаметр внутренней полости которой - 158 мм, глубина наружного отбеленного слоя (рабочего) - 10 мм. С обоих концов бочки запрессованы цапфы. На конической части цапфы установлены подшипники. Концевая цилиндрическая часть служит для насадки приводного шкива или шестерен межвальцовой передачи. В цапфы быстровращаю-щегося вальца вставлены трубки с охлаждающей водой.

Мелющие вальцы вращаются в двухрядных роликовых сферических подшипниках, имеющих коническую посадку внутренних обойм. Подшипник демонтируют с конической части цапфы гидравлическим съемником, который нагнетает масло через отверстие в цапфе в место сопряжения с поверхностью внутренней обоймы подшипника. Корпуса подшипников верхнего вальца прикреплены к боковой части станины четырьмя болтами, а корпуса подшипников нижнего подвижного вальца имеют свободные концы (локти), опирающиеся на предохранительные пружины. Корпус нижнего вальца выполнен разъемным, что позволяет снимать вальцы вместе с подшипниками.

Устройство для охлаждения верхнего быстровращающегося вальца работает следующим образом. Валец 6 охлаждается водой, поступающей через трубку 5, которая введена свободным концом через осевое отверстие в цапфе во внутреннюю полость вальца. Трубка имеет два отверстия для разбрызгивания воды внутри вальца. Открытый конец трубки жестко соединен с корпусом 7. Внутри корпуса в подводящем водопроводе установлен пробковый кран, регулирующий подачу воды во внутреннюю полость вальца. Теплая вода отводится через кольцеобразный зазор между неподвижной трубкой 5 и вращающейся бронзовой втулкой 2 с коническим раструбом. Отработавшая вода поступает в сливную камеру, отводится по трубе в охлаждающее устройство и возвращается в систему рециркуляции. Нагретую воду можно использовать для увлажнения зерна в подготовительном отделении мукомольного завода.

Центробежные силы инерции, возникающие при вращении вальца, способствуют хорошему омыванию внутренней его полости и отводу теплоты. При нормальной работе системы охлаждения температура быстровращающегося вальца не должна превышать 60 °С. По данным испытаний, температура поверхности вальца не превышает 36 °С, а продуктов после измельчения - 25 °С.

Охлаждение вальцов оказывает положительное влияние на технологические показатели помола. Снижение температуры в зоне измельчения предотвращает подсушивание и чрезмерное измельчение оболочек, а также перегрев продуктов размола. Расход воды на охлаждение не превышает 0,6 м3/ч для одного вальцового станка. Однако в настоящее время на практике постепенно отказываются от водяного охлаждения вальцов по причинам, связанным с экономическими и дополнительными трудозатратами.


1 - корпус; 2 - бронзовая втулка; 3 - шестерни межвальцовой передачи; 4 - подшипник; 5 - трубка; 6 - цапфа; 7 - валец

Ведущие зарубежные фирмы достигают практически тех же результатов внедрением активной системы аспирации и др.

В условиях производства необходимо контролировать температуру нагрева вальцов и измельченного продукта. При увеличении температуры продукта выше нормы после прохождения его через вальцовый станок, необходимо выявить причину нарушения технологического процесса: износ рабочей поверхности вальцов, непараллельность вальцов, неравномерность заполнения мелющей щели, нарушение в системе охлаждения вальцов и др.

В процессе размола к рабочей поверхности вальцов прилипают лепешки измельченных частей зерна. Для очистки рифленых вальцов всех систем, кроме I, II драных, 12-й размольной установлены щетки 10 из полимерного материала, а гладкие вальцы очищаются ножами 8. Механизм привода вальцов состоит из привода верхнего вальца и межвальцовой передачи. Крутящий момент от электродвигателя передается клиноременной передачей на ведомый шкив, который устанавливается на правой цапфе верхнего быстровращающегося вальца. Диаметр ведущего шкива для рифленых вальцов составляет 150 мм, а для гладких - 132 мм.

Предусмотрено два варианта установки электродвигателей: непосредственно на перекрытии, где располагается вальцовый станок, и под перекрытием на специальной площадке (для станка А1-БЗН подходит только второй вариант).

Межвальцовая передача представляет собой редуктор, состоящий из двух косозубых шестерен шириной 55 мм. Большая чугунная шестерня и малая стальная установлены, соответственно, на левых концах цапф нижнего и верхнего вальцов. Обе шестерни вращаются в масле, залитом в кожух 10.

1 - горловина; 2 - шкив; 3 - пневмоперекчючатель привала-отвала; 4 - пружина заслонки; 5 - преобразователь сигнала; 6 - шкив питающего механизма; 7 - рукоятка переключения скоростей; 8 - шестерни межвальцовой передачи; 9 - корпус системы охлаждения; 10 - коясух межвальцовой передачи; 11 - корпус подшипника; 12 - блок реле; 13 - конец (локоть) свободный подвижного корпуса подшипника; 14 - фильтр воздушный; 15 - клапан электромагнитный; 16 - воздухопроводы; 17 - пружина предохранительная; 18 - пневмоцилиндр; 19 - кнопки «Пуск», «Остановка»; 20 - станина; 21 - подвеска; 22 - вал эксцентриковый; 23 - штурвал механизма настройки параллельности вальцов; 24 - рукоятка точной настройки межвальцового зазора; 25 - тяга; 26 - винт ограничительный; 27- цапфа

Настройка вальцов на параллельность производится двумя механизмами винтового типа, сопряженными с механизмом параллельного сближения. При вращении штурвала по часовой стрелке через систему рычагов подвеска тянет локоть подвижного подшипника вверх и сближает вальцы на одном конце, при вращении штурвала против часовой стрелки подвеска опускается, поворачивает рычаг вокруг эксцентрикового вала и отводит нижний валец. Стопорной головкой 7 с помощью рукоятки фиксируется установленное положение нижнего вальца. Такая же операция производится и для другого конца вальца.

Максимальное изменение зазора между вальцами с помощью механизма настройки параллельности составляет 4,4 мм. Чувствительность механизма характеризуется изменением зазора за один оборот штурвала и равна 0,22 мм. Если измельчение по длине вальцов неодинаково, то вращением штурвалов 6 поднимают или опускают свободные концы корпусов подвижных подшипников, т. е. выравнивают рабочий зазор между вальцами.

Механизм параллельного сближения вальцов предназначен для точной установки рабочего зазора. Требуемый рабочий зазор между вальцами устанавливается вращением рукоятки 5, которая через систему рычагов разворачивает эксцентриковый вал так, чтобы соответственно приблизить или отвести нижний валец. Максимальное изменение зазора между вальцами механизмом параллельного сближения составляет 1,2 мм, а чувствительность механизма за один оборот рукоятки - 0,06 мм.

Система привала - отвала вальцов обеспечивает автоматическое и ручное управление этими операциями. В рабочем режиме функционирует автоматическое управление привалом - отвалом вальцов. Ручной привал и отвал вальцов выполняется подъемом и опусканием рукоятки 5. Усилие, прикладываемое к рукоятке, передается на эксцентриковый вал и далее по схеме, рассмотренной выше, происходит привал или отвал. Положение привала вальца фиксируется защелкой, которая зацепляется с упором, запрессованным в боковине станка.

При попадании в вальцовый станок инородных тел размером до 5 мм предохранительная пружина обеспечивает безопасное их прохождение в результате грубого отвала нижнего вальца.

Автоматическое управление привалом - отвалом вальцов включает две схемы: электрическую, измеряющую уровень продукта под питающим механизмом и вырабатывающую соответствующий электрический сигнал управления, и пневматическую - воздействующую через систему рычагов на эксцентриковый вал, который обеспечивает привал-отвал по схеме, рассмотренной выше.

Электрическая схема состоит из сигнализатора уровня продукта, блока реле 72 и электромагнитного клапана 75. Пневматическая схема состоит из входного фильтра 14, пневмопереключателя 3 и пневмоцилиндра 18.
Сигнализатор уровня продукта представляет собой конденсатор с определенной емкостью. Изменение уровня продукта в приемной трубе станка изменяет емкость сигнализатора и соответственно управляющий сигнал, который преобразуется и усиливается в схеме электронного блока. При определенной величине сигнал вызывает замыкание контактов реле. Ток напряжением 220 В подается на обмотки электромагнитного клапана 75, который открывает доступ сжатому воздуху под давлением 0,50 МПа к поршню пневмоцилиндра 18. Поршень поднимает шток и через систему рычагов разворачивает эксцентриковый вал 22 на привал нижнего вальца.

При уменьшении уровня продукта в приемной трубе до определенного предела управляющий сигнал по величине становится недостаточным для удержания контактов реле в замкнутом состоянии. Клапан перекрывает доступ сжатому воздуху в пневмоцилиндр, поршень со штоком опускается и механизм срабатывает на отвал вальца. При работе станка в автоматическом режиме в экстренных случаях возможен принудительный отвал вальцов ручным пневмопереключателем 3.

Приемно-питающее устройство состоит из приемной трубы, валкового питающего механизма с приводом и заслонкой и системы регулирования подачи продукта.

Приемная труба представляет собой стеклянный цилиндр, установленный в горловине вальцового станка. Приемные трубы вальцовых станков, обслуживающие две различные технологические системы, разделены вертикальной перегородкой, которая обеспечивает автономное питание каждой половины станка. В каждой половине трубы установлен сигнализатор уровня продукта.

Механизм подачи продукта в зависимости от физикомеханических свойств исходного продукта на различных технологических системах имеет семь форм исполнения и включает в различных сочетаниях валковый питатель, редуктор, заслонку и привод.

Питатель может быть выполнен в трех модификациях: дозирующий валок с промежуточными валками (для I драной системы), дозирующий валок со шнеком (для остальных драных систем) и дозирующий и распределительный валки (для размольных систем). На поверхности дозирующего валка нанесены продольные рифли с уклоном 1°30". В зависимости от технологической системы их может быть 50, 30 или 20. Распределительный валок имеет 50 поперечных рифлей с шагом 2 мм. Шнек выполняется в виде вала с лопастями. Промежуточный валик не имеет нарезки, он изолирован от зоны подачи продукта и выполняет лишь кинематические функции.

Все питатели типа валка со шнеком и двухвалковые для 11-й и 12-й размольных систем имеют редукторы для четырехпозиционного регулирования скоростей дозирующего валка. Скорость вращения валка питающего механизма устанавливают так, чтобы слой продукта был тонким и распределялся по всей его длине.


1 - рукоятка; 2 - шнек; 3 - пружина; 4, 5 - кулачковые полумуфты; 6 - шкив; 7 - плоскоременная передача; 8 - быстровращающийся валец; 9 - тяга с поводком; 10 - валок; 11 - блок шестерен

Заслонка 3 образует с дозирующим валком питающий зазор, который устанавливают вручную с помощью винтового устройства 4 и регулируют автоматически. Автоматическое регулирование питающего зазора каждой половины станка осуществляется с помощью двух шарнирно подвешенных гофрированных шторок-датчиков 15 и системы рычагов. Чем больше поступает в станок продукта, тем больше питающий зазор, и наоборот. Для каждой технологической системы с помощью ограничительного винта вручную устанавливают диапазон автоматического перемещения заслонки.

Привод механизма подачи продукта осуществляется плоскоременной передачей 7 от ступицы шкива привода мелющих вальцов. Вращение передается на шкив 6, на одном валу с которым установлено две кулачковые полумуфты 4, 5, которые входят в зацепление одновременно с привалом медленновращающегося вальца. Питающие валки установлены в подшипниках скольжения.

Станина вальцового станка разборная, чугунная, состоит из двух боковин, двух продольных стенок и траверсы. Детали станины соединены между собой болтами. В боковинах сделаны отверстия и проемы для размещения подвижных и неподвижных сборочных единиц станка. Станок полностью закрыт капотом, который изготовлен из четырех съемных нижних и четырех откидных верхних стальных штампованных ограждений.

Работа станка начинается с пуска электродвигателя, от которого клиновыми ремнями вращение передается сначала шкиву верхнего вальца, а затем через межвальцовые шестерни - нижнему вальцу. От ступицы шкива верхнего вальца вращение плоским ремнем передается шкиву питающих валков, а от него - ведущей полумуфте кулачковой муфты.

При заполнении приемной трубы продуктом емкостной сигнализатор уровня обеспечивает замыкание цепи электромагнитного клапана, который соединяет магистраль сжатого воздуха с рабочей полостью пневмоцилиндра. При этом поршень поднимает шток вверх, а от него через систему рычагов разворачивается эксцентриковый вал, который перемещает вверх свободные концы (локти) подшипников нижнего вальца, в результате чего происходит привал мелющих вальцов.

Под действием пружины ведомая полумуфта кулачковой муфты входит в зацепление с ведущей полумуфтой и вращение через шестерни передается питающим валкам. Под действием массы продукта датчик питания через систему рычагов поворачивает заслонку, и через питающий зазор начинает поступать продукт. При прекращении поступления продукта в приемную трубу станка электронная схема размыкает цепь электромагнитного клапана и через систему рычагов происходит отвал мелющих вальцов.

Технологическая эффективность вальцовых станков для размола зерна

Определяется оптимальным сочетанием трех основных показателей: степенью измельчения зерна или его частиц, производительностью каждой пары вальцов и удельным расходом электроэнергии.

Степень измельчения характеризуется уменьшением крупности частиц. Ее оценивают коэффициентом извлечения. Коэффициент извлечения (%):

где а и d - количество проходовой фракции в продукте до и после вальцового станка, г.

По данным испытаний, удельный расход электроэнергии станка А1-БЗН на I драной системе составил 17,3; на II драной системе - 7,7; на

2-й размольной системе - 21,9-25,3 кВт-ч/т.

Эксплуатация вальцовых станков для размола зерна

При работе станка на холостом ходу проверяют: наличие и качество смазки; работу устройства привально-отвального механизма (вручную, от пневмопереключателя, от системы дистанционного и местного включения, в автоматическом режиме); блокировку включения питающих валков и перемещение заслонки; отсутствие заклинивания вальцов при вращении вручную; крепление резьбовых соединений; правильность установки и равномерность рабочего зазора между вальцами; перемещение очистителей вальцов; состояние ремней; нагрев подшипников (не более 60 °С); работу электросхемы и аппаратуры; подачу воды и давление сжатого воздуха в сетях; работу подводящих и отводящих транспортных устройств.

Настройка и регулирование режима размола станка под нагрузкой сводятся, в основном, к регулированию системы питания и рабочего зазора между мелющими вальцами. Для станков, снабженных редуктором, сначала устанавливают минимальную скорость вращения дозирующего валика, а затем подбирают ее оптимальное значение. В соответствии с распределением нагрузок по технологическим системам с помощью ограничительного болта вручную регулируют величину перемещения заслонки над дозирующим валком.

На станках размольных систем визуально проверяют равномерность распределения продукта по длине распределительного валка. На каждой половине вальцового станка проверяют извлечение муки, которое должно соответствовать действующим «Правилам организации и ведения технологического процесса на мукомольных предприятиях».

Регулирование системы питания и рабочего зазора между вальцами следует проводить последовательным приближением к требуемым показателям с постоянным контролем нагрузки электродвигателя, а также подводящих и отводящих транспортных систем.

При настройке режима размола проверяют чувствительность автоматической системы регулирования подачи исходного зерна в установленном диапазоне, расположение конуса продукта в приемной трубе относительно сигнализатора уровня.

После настройки режима размола должны быть затянуты контровочные устройства органов регулирования. В дальнейшем для данной помольной партии не следует корректировать режим помола, который должен обеспечивать стабильные результаты в течение длительного времени.

Вальцовые станки типа А1-БЗН

Вальцовые станки типа A1-БЗН выпускают в трех модификациях, для различных мукомольных заводов. Станки устанавливают группами по четыре-пять машин с общими капотами. Набор станков различной формы исполнения и последовательность их монтажа в каждой группе регламентированы проектом типового мукомольного завода. Характерно, что электродвигатели этих вальцовых станков размещают на специальной площадке под междуэтажным перекрытием.

Вальцовый станок типа A1-БЗН имеет 21 форму исполнения.

Вальцовый станок А1-БЗ-2Н используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка ЗМ-2. Станок А1-БЗ-2Н отличается от станка AI-БЗН наличием индивидуальных капотов и возможностью установки электродвигателя на том же перекрытии, где расположен станок, а также под перекрытием на специальной площадке. Станок имеет 39 форм исполнения.

Вальцовый станок Al-БЗ-ЗН используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка БВ-2.

Он отличается от описанных выше станков наличием устройства для верхнего забора измельченного продукта. Это устройство состоит из приемных труб для отсоса продукта непосредственно после измельчения из бункеров под вальцами, системы пневмотранспорта. Вальцовый станок А1-БЗ-ЗН имеет 22 формы исполнения.

Вальцовый станок А1-БЗН (рис.) состоит из следующих основных сборочных единиц: мелющих вальцов, привода вальцов, меж-вальцовой передачи, механизмов настройки и параллельного сближения вальцов, системы привала - отвала вальцов, приемно-питающего устройства и станины.

:
1 - приемная труба; 2 - сигнализатор уровня продукта; 3 - заслонка; 4 - винтовое устройство; 5 - рукоятка; 6 - штурвал; 7 - стопорная головка; 8 - нож-очиститель; 9 - выпускной бункер; 10 - щетка-очиститель; 11, 12 - медленно-и быстровращающиеся вальцы; 13 - питающий валок; 14 - шнек; 15 - шторки-датчики

Мелющие вальцы устанавливаются парами в обеих половинах станка. Причем линия, соединяющая центры торцевых окружностей вальцов, образует угол 30° с горизонталью. Длина вальца - 1000 мм, а номинальный диаметр бочки - 250 мм. Масса полого вальца примерно на 30% меньше цельного - 270 кг.

Валец представляет собой двухслойную полую цилиндрическую бочку, диаметр внутренней полости которой - 158 мм, глубина наружного отбеленного слоя (рабочего) - 10 мм. С обоих концов бочки запрессованы цапфы. На конической части цапфы установлены подшипники. Концевая цилиндрическая часть служит для насадки приводного шкива или шестерен межвальцовой передачи. В цапфы быстровращающегося вальца вставлены трубки с охлаждающей водой.

Мелющие вальцы вращаются в двухрядных роликовых сферических подшипниках, имеющих коническую посадку внутренних обойм. Подшипник демонтируют с конической части цапфы гидравлическим съемником, который нагнетает масло через отверстие в цапфе в место сопряжения с поверхностью внутренней обоймы подшипника. Корпуса подшипников верхнего вальца прикреплены к боковой части станины четырьмя болтами, а корпуса подшипников нижнего подвижного вальца имеют свободные концы (локти), опирающиеся на предохранительные пружины. Корпус нижнего вальца выполнен разъемным, что позволяет снимать вальцы вместе с подшипниками.

Устройство для охлаждения верхнего быстровращающегося вальца работает следующим образом (рис.). Валец 6 охлаждается водой, поступающей через трубку 5, которая введена свободным концом через осевое отверстие в цапфе во внутреннюю полость вальца. Трубка имеет два отверстия для разбрызгивания воды внутри вальца. Открытый конец трубки жестко соединен с корпусом 7. Внутри корпуса в подводящем водопроводе установлен пробковый кран, регулирующий подачу воды во внутреннюю полость вальца. Теплая вода отводится через кольцеобразный зазор между неподвижной трубкой 5 и вращающейся бронзовой втулкой 2 с коническим раструбом. Отработавшая вода поступает в сливную камеру, отводится по трубе в охлаждающее устройство и возвращается в систему рециркуляции. Нагретую воду можно использовать для увлажнения зерна в подготовительном отделении мукомольного завода.

Центробежные силы инерции, возникающие при вращении вальца, способствуют хорошему омыванию внутренней его полости и отводу теплоты. При нормальной работе системы охлаждения температура быстровращающегося вальца не должна превышать 60 °С. По данным испытаний, температура поверхности вальца не превышает 36 °С, а продуктов после измельчения - 25 °С.

Охлаждение вальцов оказывает положительное влияние на технологические показатели помола. Снижение температуры в зоне измельчения предотвращает подсушивание и чрезмерное измельчение оболочек, а также перегрев продуктов размола. Расход воды на охлаждение не превышает 0,6 м3/ч для одного вальцового станка. Однако в настоящее время на практике постепенно отказываются от водяного охлаждения вальцов по причинам, связанным с экономическими и дополнительными трудозатратами.

1 - корпус; 2 - бронзовая втулка; 3 - шестерни межвальцовой передачи; 4 - подшипник; 5 - трубка; 6 - цапфа; 7 - валец

Ведущие зарубежные фирмы достигают практически тех же результатов внедрением активной системы аспирации и др.

В условиях производства необходимо контролировать температуру нагрева вальцов и измельченного продукта. При увеличении температуры продукта выше нормы после прохождения его через вальцовый станок, необходимо выявить причину нарушения технологического процесса: износ рабочей поверхности вальцов, непараллельность вальцов, неравномерность заполнения мелющей щели, нарушение в системе охлаждения вальцов и др.

В процессе размола к рабочей поверхности вальцов прилипают лепешки измельченных частей зерна. Для очистки рифленых вальцов всех систем, кроме I, II драных, 12-й размольной установлены щетки 10 из полимерного материала, а гладкие вальцы очищаются ножами 8 (см. рис.). Механизм привода вальцов состоит из привода верхнего вальца и межвальцовой передачи. Крутящий момент от электродвигателя передается клиноременной передачей на ведомый шкив, который устанавливается на правой цапфе верхнего быстровращающегося вальца. Диаметр ведущего шкива для рифленых вальцов составляет 150 мм, а для гладких - 132 мм.

Предусмотрено два варианта установки электродвигателей: непосредственно на перекрытии, где располагается вальцовый станок, и под перекрытием на специальной площадке (для станка А1-БЗН подходит только второй вариант).

Межвальцовая передача представляет собой редуктор, состоящий из двух косозубых шестерен шириной 55 мм. Большая чугунная шестерня и малая стальная установлены, соответственно, на левых концах цапф нижнего и верхнего вальцов. Обе шестерни вращаются в масле, залитом в кожух 10 (рис.).

1 - горловина; 2 - шкив; 3 - пневмоперекчючатель привала-отвала; 4 - пружина заслонки; 5 - преобразователь сигнала; 6 - шкив питающего механизма; 7 - рукоятка переключения скоростей; 8 - шестерни межвальцовой передачи; 9 - корпус системы охлаждения; 10 - коясух межвальцовой передачи; 11 - корпус подшипника; 12 - блок реле; 13 - конец (локоть) свободный подвижного корпуса подшипника; 14 - фильтр воздушный; 15 - клапан электромагнитный; 16 - воздухопроводы; 17 - пружина предохранительная; 18 - пневмоцилиндр; 19 - кнопки «Пуск», «Остановка»; 20 - станина; 21 - подвеска; 22 - вал эксцентриковый; 23 - штурвал механизма настройки параллельности вальцов; 24 - рукоятка точной настройки межвальцового зазора; 25 - тяга; 26 - винт ограничительный; 27- цапфа

Настройка вальцов на параллельность производится двумя механизмами винтового типа, сопряженными с механизмом параллельного сближения. При вращении штурвала по часовой стрелке через систему рычагов подвеска тянет локоть подвижного подшипника вверх и сближает вальцы на одном конце, при вращении штурвала против часовой стрелки подвеска опускается, поворачивает рычаг вокруг эксцентрикового вала и отводит нижний валец. Стопорной головкой 7 (см. рис.) с помощью рукоятки фиксируется установленное положение нижнего вальца. Такая же операция производится и для другого конца вальца.

Максимальное изменение зазора между вальцами с помощью механизма настройки параллельности составляет 4,4 мм. Чувствительность механизма характеризуется изменением зазора за один оборот штурвала и равна 0,22 мм. Если измельчение по длине вальцов неодинаково, то вращением штурвалов 6 поднимают или опускают свободные концы корпусов подвижных подшипников, т. е. выравнивают рабочий зазор между вальцами.

Механизм параллельного сближения вальцов предназначен для точной установки рабочего зазора. Требуемый рабочий зазор между вальцами устанавливается вращением рукоятки 5, которая через систему рычагов разворачивает эксцентриковый вал так, чтобы соответственно приблизить или отвести нижний валец. Максимальное изменение зазора между вальцами механизмом параллельного сближения составляет 1,2 мм, а чувствительность механизма за один оборот рукоятки - 0,06 мм.

Система привала - отвала вальцов обеспечивает автоматическое и ручное управление этими операциями. В рабочем режиме функционирует автоматическое управление привалом - отвалом вальцов. Ручной привал и отвал вальцов выполняется подъемом и опусканием рукоятки 5 (см. рис.). Усилие, прикладываемое к рукоятке, передается на эксцентриковый вал и далее по схеме, рассмотренной выше, происходит привал или отвал. Положение привала вальца фиксируется защелкой, которая зацепляется с упором, запрессованным в боковине станка.

При попадании в вальцовый станок инородных тел размером до 5 мм предохранительная пружина обеспечивает безопасное их прохождение в результате грубого отвала нижнего вальца.

Автоматическое управление привалом - отвалом вальцов включает две схемы: электрическую, измеряющую уровень продукта под питающим механизмом и вырабатывающую соответствующий электрический сигнал управления, и пневматическую - воздействующую через систему рычагов на эксцентриковый вал, который обеспечивает привал-отвал по схеме, рассмотренной выше.

Электрическая схема состоит из сигнализатора уровня продукта, блока реле 72 (рис.) и электромагнитного клапана 75. Пневматическая схема состоит из входного фильтра 14, пневмопереключателя 3 и пневмоцилиндра 18.
Сигнализатор уровня продукта представляет собой конденсатор с определенной емкостью. Изменение уровня продукта в приемной трубе станка изменяет емкость сигнализатора и соответственно управляющий сигнал, который преобразуется и усиливается в схеме электронного блока. При определенной величине сигнал вызывает замыкание контактов реле. Ток напряжением 220 В подается на обмотки электромагнитного клапана 75, который открывает доступ сжатому воздуху под давлением 0,50 МПа к поршню пневмоцилиндра 18. Поршень поднимает шток и через систему рычагов разворачивает эксцентриковый вал 22 на привал нижнего вальца.

При уменьшении уровня продукта в приемной трубе до определенного предела управляющий сигнал по величине становится недостаточным для удержания контактов реле в замкнутом состоянии. Клапан перекрывает доступ сжатому воздуху в пневмоцилиндр, поршень со штоком опускается и механизм срабатывает на отвал вальца. При работе станка в автоматическом режиме в экстренных случаях возможен принудительный отвал вальцов ручным пневмопереключателем 3.

Приемно-питающее устройство состоит из приемной трубы, валкового питающего механизма с приводом и заслонкой и системы регулирования подачи продукта.

Приемная труба представляет собой стеклянный цилиндр, установленный в горловине вальцового станка. Приемные трубы вальцовых станков, обслуживающие две различные технологические системы, разделены вертикальной перегородкой, которая обеспечивает автономное питание каждой половины станка. В каждой половине трубы установлен сигнализатор уровня продукта.

Механизм подачи продукта (рис.) в зависимости от физикомеханических свойств исходного продукта на различных технологических системах имеет семь форм исполнения и включает в различных сочетаниях валковый питатель, редуктор, заслонку и привод.

Питатель может быть выполнен в трех модификациях: дозирующий валок с промежуточными валками (для I драной системы), дозирующий валок со шнеком (для остальных драных систем) и дозирующий и распределительный валки (для размольных систем). На поверхности дозирующего валка нанесены продольные рифли с уклоном 1°30". В зависимости от технологической системы их может быть 50, 30 или 20. Распределительный валок имеет 50 поперечных рифлей с шагом 2 мм. Шнек выполняется в виде вала с лопастями. Промежуточный валик не имеет нарезки, он изолирован от зоны подачи продукта и выполняет лишь кинематические функции.

Все питатели типа валка со шнеком и двухвалковые для 11-й и 12-й размольных систем имеют редукторы для четырехпозиционного регулирования скоростей дозирующего валка. Скорость вращения валка питающего механизма устанавливают так, чтобы слой продукта был тонким и распределялся по всей его длине.

1 - рукоятка; 2 - шнек; 3 - пружина; 4, 5 - кулачковые полумуфты; 6 - шкив; 7 - плоскоременная передача; 8 - быстровращающийся валец; 9 - тяга с поводком; 10 - валок; 11 - блок шестерен

Заслонка 3 (см. рис.) образует с дозирующим валком питающий зазор, который устанавливают вручную с помощью винтового устройства 4 и регулируют автоматически. Автоматическое регулирование питающего зазора каждой половины станка осуществляется с помощью двух шарнирно подвешенных гофрированных шторок-датчиков 15 и системы рычагов. Чем больше поступает в станок продукта, тем больше питающий зазор, и наоборот. Для каждой технологической системы с помощью ограничительного винта вручную устанавливают диапазон автоматического перемещения заслонки.

Привод механизма подачи продукта (см. рис.) осуществляется плоскоременной передачей 7 от ступицы шкива привода мелющих вальцов. Вращение передается на шкив 6, на одном валу с которым установлено две кулачковые полумуфты 4, 5, которые входят в зацепление одновременно с привалом медленновращающегося вальца. Питающие валки установлены в подшипниках скольжения.

Станина вальцового станка разборная, чугунная, состоит из двух боковин, двух продольных стенок и траверсы. Детали станины соединены между собой болтами. В боковинах сделаны отверстия и проемы для размещения подвижных и неподвижных сборочных единиц станка. Станок полностью закрыт капотом, который изготовлен из четырех съемных нижних и четырех откидных верхних стальных штампованных ограждений.

Работа станка начинается с пуска электродвигателя, от которого клиновыми ремнями вращение передается сначала шкиву верхнего вальца, а затем через межвальцовые шестерни - нижнему вальцу. От ступицы шкива верхнего вальца вращение плоским ремнем передается шкиву питающих валков, а от него - ведущей полумуфте кулачковой муфты.

При заполнении приемной трубы продуктом емкостной сигнализатор уровня обеспечивает замыкание цепи электромагнитного клапана, который соединяет магистраль сжатого воздуха с рабочей полостью пневмоцилиндра. При этом поршень поднимает шток вверх, а от него через систему рычагов разворачивается эксцентриковый вал, который перемещает вверх свободные концы (локти) подшипников нижнего вальца, в результате чего происходит привал мелющих вальцов.

Под действием пружины ведомая полумуфта кулачковой муфты входит в зацепление с ведущей полумуфтой и вращение через шестерни передается питающим валкам. Под действием массы продукта датчик питания через систему рычагов поворачивает заслонку, и через питающий зазор начинает поступать продукт. При прекращении поступления продукта в приемную трубу станка электронная схема размыкает цепь электромагнитного клапана и через систему рычагов происходит отвал мелющих вальцов.


Измельчение зерна и продуктов его размола


Назначение вальцовых станков для измельчения зерна

Процесс измельчения зерна и промежуточных продуктов при производстве муки является одной из главных и наиболее энергоемких операций, так как он в значительной мере влияет на выход и качество готовой продукции. Технологические приемы и машины, применяемые для измельчения, в значительной степени определяют технико-экономические показатели мукомольного завода.

На мукомольных заводах с комплектным оборудованием размол зерна и промежуточных продуктов производится на вальцовых станках типа А1-БЗН. Вальцовый станок - первая технологическая машина размольного отделения, от которой в значительной мере зависит производительность, эффективность и стабильность работы последующего технологического и транспортного оборудования.

Процесс разрушения твердых тел на части под действием ударных или ударно-истирающих воздействий, а также сжатия и сдвига называется измельчением. Основные требования, предъявляемые к процессу измельчения при сортовых помолах зерна пшеницы, сводятся к получению максимального количества промежуточных продуктов в виде крупок и дунстов высокого качества, обогащению полученных промежуточных продуктов, последующему их измельчению в муку и вымолу оболочек из оставшихся частиц эндосперма. От правильного измельчения зависит рациональное использование перерабатываемого зерна, качество вырабатываемой муки, расход электроэнергии на получение муки, производительность измельчающих машин и технико-экономические показатели работы мукомольного завода.

Рассматривая измельчение зерна как основу технологического процесса на мукомольном заводе, не следует забывать, что оно органически связано с предыдущими и последующими процессами переработки зерна, и в первую очередь, с сортированием, без которого невозможно современное производство сортовой муки. Измельчители являются основным и наиболее энергоемким видом технологического оборудования.

Основные факторы, влияющие на процесс измельчения зерновых продуктов в вальцовых станках - структурно-механические и технологические свойства зерна, кинематические и геометрические параметры пар-ноработающих вальцов и нагрузка на машину. Среди показателей, характеризующих структурно-механические и технологические свойства зерна, наибольшее влияние на эффективность процесса измельчения в вальцовых станках оказывают стекловидность и влажность зерновой массы.

Стекловидность характеризует консистенцию эндосперма зерна, его структурно-механические и технологические свойства, т. е. поведение зерна в процессе измельчения, его количественные, качественные и энергетические показатели. Зерно с более высокой стекловидностью обладает повышенной прочностью и требует больших энергетических затрат на измельчение.

Влажность зерна также оказывает существенное влияние на эффективность процесса измельчения. Установлено, что с повышением влажности зерна возрастает его сопротивляемость разрушению, снижается микротвердость и повышается удельный расход электроэнергии. При повышении влажности зерна от 14 до 16,5% снижается выход крупных фракций промежуточных продуктов на крупообразующих системах, снижается зольность при одновременном росте удельного расхода электроэнергии на измельчение. Учитывая существенное улучшение качества промежуточных продуктов и муки вследствие меньшей дробимости оболочек, следует стремиться к повышению влажности перерабатываемого зерна до возможных пределов.

К кинематическим параметрам относят окружные скорости быстро- и медленновращающегося вальцов v6 и vM и их отношение К = vq/vm.

К геометрическим параметрам вальцового станка относят: величину межвальцового зазора, рабочую поверхность вальцов (рифленая или микрошероховатая), характеристику поверхности рифленых вальцов (число рифлей на единицу длины окружности вальца, уклон рифлей, профиль рифлей, взаимное расположение рифлей парноработающих вальцов, диаметр вальцов, длину вальцов).

Окружные скорости вальцов оказывают основное влияние на скорость приложения усилий от вальцов к измельчаемому продукту, а также на скорость обработки продукта в рабочей зоне вальцов. Окружные скорости вальцов определяют скорость движения измельчаемых частиц в рабочей зоне вальцов.

При повышении окружных скоростей с 4 до 10 м/с (для быстров-ращающегося вальца) увеличивается степень измельчения зерновых продуктов на всех этапах. При этом качество извлекаемых промежуточных продуктов и муки по зольности ухудшается, а удельный расход электроэнергии возрастает. Особенно заметно ухудшается качество муки в системах, обрабатывающих продукты, содержащие оболочки. Это объясняется повышением скорости деформирования всех измельчаемых продуктов, в том числе и оболочечных, которые попадают в извлекаемые продукты и увеличивают их зольность. Окружная скорость быст-ровращающихся рифленых вальцов в станках типа А1-БЗН составляет 5,5-6,0 м/с, а микрошероховатых - 5,15-5,40 м/с.

Отношение окружных скоростей вальцов связано с величиной сдвигающих усилий и соотношением сдвигающих и сжимающих усилий в рабочей зоне вальцов. С увеличением отношения окружных скоростей вальцов возрастают усилия, оказывающие на измельчаемый продукт со сторо-
ны вальцов. С возрастанием величины К повышается степень измельчения зерновых продуктов на всех этапах, зольность же извлекаемых продуктов несколько увеличивается, особенно при измельчении продуктов, содержащих значительное количество оболочек. На драных системах вальцовых станков типа А1-БЗН значение К равно 2,5, а на размольных - 1,25.

Величина межвальцового зазора при сортовых помолах пшеницы изменяется от 0,05 до 1,0 мм и является единственным оперативно регулируемым параметром процесса измельчения. Зазор между вальцами устанавливают в зависимости от физико-механических свойств измельчаемого продукта и места в технологической схеме (процессы драной, шлифовочный и размольный). Он колеблется в сравнительно широких пределах: от 0,05 до 1,00 мм. Так, например, на I драной системе номинальный зазор между приваленными невращающимися вальцами должен быть 0,8-1,0 мм, на II драной системе - 0,6-0,8 мм, на размольных системах с рифлеными вальцами - 0,1-0,2 мм, а на остальных размольных системах - 0,05 мм.

Важное условие выполнения всех последовательных этапов измельчения зерна - это обеспечение заданных параметров рифленых и микрошероховатых поверхностей вальцов.

В технологическом процессе размола зерна в вальцовых станках типа А1-БЗН для всех драных систем и 12-й размольной системы используют рифленые вальцы, а для всех остальных - микрошероховатые. Для каждой технологической системы «Правилами организации и ведения технологического процесса на мукомольных предприятиях» определены: профиль и число рифлей, их взаимное расположение, уклон, а также соответствующие параметры шероховатости.

Рифли нарезают на шлифовально-рифельном станке, а микрошеро-ховатую поверхность наносят струей сжатого воздуха и абразивного материала на станке со специальным пескоструйным устройством.

В настоящее время основным изготовителем отечественных вальцовых станков является машиностроительный завод ОАО «Мельинвест», который освоил изготовление и обработку поверхности вальцов. От их качества во многом зависят технико-экономические показатели работы мукомольного завода в целом. На заводе успешно функционирует рациональная система нарезки рифлей и матирования вальцов, как для станков собственного производства, так и для станков других производителей. Здесь осуществляют перенарезку износившихся поверхностей вальцов различных конструкций, изготавливают комплекты вальцов для мельниц различной производительности.

Для обеспечения высокого качества вальцов двухслойные чугунные бочки изготавливают из центробежного литья. Рабочий слой вальцов (глубиной не менее 20 мм) выполняют из белого износостойкого чугуна. Твердость этого слоя для рифленых вальцов составляет 530-550 НВ (единиц Бринелля), или 75-80 HS (единиц Шора).

Производительность пары вальцов зависит от их длины, зазора между ними, скорости прохождения измельчаемого продукта и его объемной массы, а также степени использования зоны измельчения.

Для расчета оборудования и общей характеристики процесса измельчения в вальцовых станках вводят нормативный показатель средней удельной нагрузки, который определяется отношением суточной производительности размольного отделения мукомольного завода к общей длине мелющей линии. Для вальцовых станков типа А1-БЗН эта нагрузка составляет 70 кг/(см*сут).

Вальцовые станки типа А1-БЗН

Вальцовые станки типа A1-БЗН выпускают в трех модификациях, для различных мукомольных заводов. Станки устанавливают группами по четыре-пять машин с общими капотами. Набор станков различной формы исполнения и последовательность их монтажа в каждой группе регламентированы проектом типового мукомольного завода. Характерно, что электродвигатели этих вальцовых станков размещают на специальной площадке под междуэтажным перекрытием.

Вальцовый станок типа Ai-БЗН имеет 21 форму исполнения.

Вальцовый станок А1-БЗ-2Н используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка ЗМ-2. Станок А1-БЗ-2Н отличается от станка AI-БЗН наличием индивидуальных капотов и возможностью установки электродвигателя на том же перекрытии, где расположен станок, а также под перекрытием на специальной площадке. Станок имеет 39 форм исполнения.

Вальцовый станок Al-БЗ-ЗН используют как на вновь строящихся, так и на реконструируемых мукомольных заводах взамен станка БВ-2.

Он отличается от описанных выше станков наличием устройства для верхнего забора измельченного продукта. Это устройство состоит из приемных труб для отсоса продукта непосредственно после измельчения из бункеров под вальцами, системы пневмотранспорта. Вальцовый станок А1-БЗ-ЗН имеет 22 формы исполнения.

Вальцовый станок А1-БЗН (рис. 17.1) состоит из следующих основных сборочных единиц: мелющих вальцов, привода вальцов, меж-вальцовой передачи, механизмов настройки и параллельного сближения вальцов, системы привала - отвала вальцов, приемно-питающего устройства и станины.

Рис. 17.1. Вальцовый станок А1-БЗН:
1 - приемная труба; 2 - сигнализатор уровня продукта; 3 - заслонка; 4 - винтовое устройство; 5 - рукоятка; 6 - штурвал; 7 - стопорная головка; 8 - нож-очиститель; 9 - выпускной бункер; 10 - щетка-очиститель; 11, 12 - медленно-и быстровращающиеся вальцы; 13 - питающий валок; 14 - шнек; 15 - шторки-датчики

Мелющие вальцы устанавливаются парами в обеих половинах станка. Причем линия, соединяющая центры торцевых окружностей вальцов, образует угол 30° с горизонталью. Длина вальца - 1000 мм, а номинальный диаметр бочки - 250 мм. Масса полого вальца примерно на 30% меньше цельного - 270 кг.
Валец представляет собой двухслойную полую цилиндрическую бочку, диаметр внутренней полости которой - 158 мм, глубина наружного отбеленного слоя (рабочего) - 10 мм. С обоих концов бочки запрессованы цапфы. На конической части цапфы установлены подшипники. Концевая цилиндрическая часть служит для насадки приводного шкива или шестерен межвальцовой передачи. В цапфы быстровращаю-щегося вальца вставлены трубки с охлаждающей водой.

Мелющие вальцы вращаются в двухрядных роликовых сферических подшипниках, имеющих коническую посадку внутренних обойм. Подшипник демонтируют с конической части цапфы гидравлическим съемником, который нагнетает масло через отверстие в цапфе в место сопряжения с поверхностью внутренней обоймы подшипника. Корпуса подшипников верхнего вальца прикреплены к боковой части станины четырьмя болтами, а корпуса подшипников нижнего подвижного вальца имеют свободные концы (локти), опирающиеся на предохранительные пружины. Корпус нижнего вальца выполнен разъемным, что позволяет снимать вальцы вместе с подшипниками.

Устройство для охлаждения верхнего быстровращающегося вальца работает следующим образом (рис. 17.2). Валец 6 охлаждается водой, поступающей через трубку 5, которая введена свободным концом через осевое отверстие в цапфе во внутреннюю полость вальца. Трубка имеет два отверстия для разбрызгивания воды внутри вальца. Открытый конец трубки жестко соединен с корпусом 7. Внутри корпуса в подводящем водопроводе установлен пробковый кран, регулирующий подачу воды во внутреннюю полость вальца. Теплая вода отводится через кольцеобразный зазор между неподвижной трубкой 5 и вращающейся бронзовой втулкой 2 с коническим раструбом. Отработавшая вода поступает в сливную камеру, отводится по трубе в охлаждающее устройство и возвращается в систему рециркуляции. Нагретую воду можно использовать для увлажнения зерна в подготовительном отделении мукомольного завода.

Центробежные силы инерции, возникающие при вращении вальца, способствуют хорошему омыванию внутренней его полости и отводу теплоты. При нормальной работе системы охлаждения температура быстровращающегося вальца не должна превышать 60 °С. По данным испытаний, температура поверхности вальца не превышает 36 °С, а продуктов после измельчения - 25 °С.

Охлаждение вальцов оказывает положительное влияние на технологические показатели помола. Снижение температуры в зоне измельчения предотвращает подсушивание и чрезмерное измельчение оболочек, а также перегрев продуктов размола. Расход воды на охлаждение не превышает 0,6 м3/ч для одного вальцового станка. Однако в настоящее время на практике постепенно отказываются от водяного охлаждения вальцов по причинам, связанным с экономическими и дополнительными трудозатратами.

Рис. 17.2. Устройство для охлаждения быстровращающегося вальца.
1 - корпус; 2 - бронзовая втулка; 3 - шестерни межвальцовой передачи; 4 - подшипник; 5 - трубка; 6 - цапфа; 7 - валец

Ведущие зарубежные фирмы достигают практически тех же результатов внедрением активной системы аспирации и др.

В условиях производства необходимо контролировать температуру нагрева вальцов и измельченного продукта. При увеличении температуры продукта выше нормы после прохождения его через вальцовый станок, необходимо выявить причину нарушения технологического процесса: износ рабочей поверхности вальцов, непараллельность вальцов, неравномерность заполнения мелющей щели, нарушение в системе охлаждения вальцов и др.

В процессе размола к рабочей поверхности вальцов прилипают лепешки измельченных частей зерна. Для очистки рифленых вальцов всех систем, кроме I, II драных, 12-й размольной установлены щетки 10 из полимерного материала, а гладкие вальцы очищаются ножами 8 (см. рис. 17.1). Механизм привода вальцов состоит из привода верхнего вальца и межвальцовой передачи. Крутящий момент от электродвигателя передается клиноременной передачей на ведомый шкив, который устанавливается на правой цапфе верхнего быстровращающегося вальца. Диаметр ведущего шкива для рифленых вальцов составляет 150 мм, а для гладких - 132 мм.

Предусмотрено два варианта установки электродвигателей: непосредственно на перекрытии, где располагается вальцовый станок, и под перекрытием на специальной площадке (для станка А1-БЗН подходит только второй вариант).

Межвальцовая передача представляет собой редуктор, состоящий из двух косозубых шестерен шириной 55 мм. Большая чугунная шестерня и малая стальная установлены, соответственно, на левых концах

цапф нижнего и верхнего вальцов. Обе шестерни вращаются в масле, залитом в кожух 10 (рис. 17.3).

Рис. 17.3. Вальцовый станок А1-БЗН в разрезе:

1 - горловина; 2 - шкив; 3 - пневмоперекчючатель привала-отвала; 4 - пружина заслонки; 5 - преобразователь сигнала; 6 - шкив питающего механизма; 7 - рукоятка переключения скоростей; 8 - шестерни межвальцовой передачи; 9 - корпус системы охлаждения; 10 - коясух межвальцовой передачи; 11 - корпус подшипника; 12 - блок реле; 13 - конец (локоть) свободный подвижного корпуса подшипника; 14 - фильтр воздушный; 15 - клапан электромагнитный; 16 - воздухопроводы; 17 - пружина предохранительная; 18 - пневмоцилиндр; 19 - кнопки «Пуск», «Остановка»; 20 - станина; 21 - подвеска; 22 - вал эксцентриковый; 23 - штурвал механизма настройки параллельности вальцов; 24 - рукоятка точной настройки межвальцового зазора; 25 - тяга; 26 - винт ограничительный; 27- цапфа

Настройка вальцов на параллельность производится двумя механизмами винтового типа, сопряженными с механизмом параллельного сближения. При вращении штурвала по часовой стрелке через систему рычагов подвеска тянет локоть подвижного подшипника вверх и сближает вальцы на одном конце, при вращении штурвала против часовой стрелки подвеска опускается, поворачивает рычаг вокруг эксцентрикового вала и отводит нижний валец. Стопорной головкой 7 (см. рис. 17.1) с помощью рукоятки фиксируется установленное положение нижнего вальца. Такая же операция производится и для другого конца вальца.

Максимальное изменение зазора между вальцами с помощью механизма настройки параллельности составляет 4,4 мм. Чувствительность механизма характеризуется изменением зазора за один оборот штурвала и равна 0,22 мм. Если измельчение по длине вальцов неодинаково, то вращением штурвалов 6 поднимают или опускают свободные концы корпусов подвижных подшипников, т. е. выравнивают рабочий зазор между вальцами.

Механизм параллельного сближения вальцов предназначен для точной установки рабочего зазора. Требуемый рабочий зазор между вальцами устанавливается вращением рукоятки 5, которая через систему рычагов разворачивает эксцентриковый вал так, чтобы соответственно приблизить или отвести нижний валец. Максимальное изменение зазора между вальцами механизмом параллельного сближения составляет 1,2 мм, а чувствительность механизма за один оборот рукоятки - 0,06 мм.

Система привала - отвала вальцов обеспечивает автоматическое и ручное управление этими операциями. В рабочем режиме функционирует автоматическое управление привалом - отвалом вальцов. Ручной привал и отвал вальцов выполняется подъемом и опусканием рукоятки 5 (см. рис. 17.1). Усилие, прикладываемое к рукоятке, передается на эксцентриковый вал и далее по схеме, рассмотренной выше, происходит привал или отвал. Положение привала вальца фиксируется защелкой, которая зацепляется с упором, запрессованным в боковине станка.

При попадании в вальцовый станок инородных тел размером до

5 мм предохранительная пружина обеспечивает безопасное их прохождение в результате грубого отвала нижнего вальца.

Автоматическое управление привалом - отвалом вальцов включает две схемы: электрическую, измеряющую уровень продукта под питающим механизмом и вырабатывающую соответствующий электрический сигнал управления, и пневматическую - воздействующую через систему рычагов на эксцентриковый вал, который обеспечивает привал-отвал по схеме, рассмотренной выше.

Электрическая схема состоит из сигнализатора уровня продукта, блока реле 72 (рис. 17.3) и электромагнитного клапана 75. Пневматическая схема состоит из входного фильтра 14, пневмопереключателя 3 и пневмоцилиндра 18.
Сигнализатор уровня продукта представляет собой конденсатор с определенной емкостью. Изменение уровня продукта в приемной трубе станка изменяет емкость сигнализатора и соответственно управляющий сигнал, который преобразуется и усиливается в схеме электронного блока. При определенной величине сигнал вызывает замыкание контактов реле. Ток напряжением 220 В подается на обмотки электромагнитного клапана 75, который открывает доступ сжатому воздуху под давлением 0,50 МПа к поршню пневмоцилиндра 18. Поршень поднимает шток и через систему рычагов разворачивает эксцентриковый вал 22 на привал нижнего вальца.

При уменьшении уровня продукта в приемной трубе до определенного предела управляющий сигнал по величине становится недостаточным для удержания контактов реле в замкнутом состоянии. Клапан перекрывает доступ сжатому воздуху в пневмоцилиндр, поршень со штоком опускается и механизм срабатывает на отвал вальца. При работе станка в автоматическом режиме в экстренных случаях возможен принудительный отвал вальцов ручным пневмопереключателем 3.

Приемно-питающее устройство состоит из приемной трубы, валкового питающего механизма с приводом и заслонкой и системы регулирования подачи продукта.

Приемная труба представляет собой стеклянный цилиндр, установленный в горловине вальцового станка. Приемные трубы вальцовых станков, обслуживающие две различные технологические системы, разделены вертикальной перегородкой, которая обеспечивает автономное питание каждой половины станка. В каждой половине трубы установлен сигнализатор уровня продукта.

Механизм подачи продукта (рис. 17.4) в зависимости от физикомеханических свойств исходного продукта на различных технологических системах имеет семь форм исполнения и включает в различных сочетаниях валковый питатель, редуктор, заслонку и привод.

Питатель может быть выполнен в трех модификациях: дозирующий валок с промежуточными валками (для I драной системы), дозирующий валок со шнеком (для остальных драных систем) и дозирующий и распределительный валки (для размольных систем). На поверхности дозирующего валка нанесены продольные рифли с уклоном 1°30". В зависимости от технологической системы их может быть 50, 30 или 20. Распределительный валок имеет 50 поперечных рифлей с шагом 2 мм. Шнек выполняется в виде вала с лопастями. Промежуточный валик не имеет нарезки, он изолирован от зоны подачи продукта и выполняет лишь кинематические функции.

Все питатели типа валка со шнеком и двухвалковые для 11-й и 12-й размольных систем имеют редукторы для четырехпозиционного регулирования скоростей дозирующего валка. Скорость вращения валка

питающего механизма устанавливают так, чтобы слой продукта был тонким и распределялся по всей его длине.

Рис. 17.4. Механизм подачи продукта
1 - рукоятка; 2 - шнек; 3 - пружина; 4, 5 - кулачковые полумуфты; 6 - шкив; 7 - плоскоременная передача; 8 - быстровращающийся валец; 9 - тяга с поводком; 10 - валок; 11 - блок шестерен

Заслонка 3 (см. рис. 17.1) образует с дозирующим валком питающий зазор, который устанавливают вручную с помощью винтового устройства 4 и регулируют автоматически. Автоматическое регулирование питающего зазора каждой половины станка осуществляется с помощью двух шарнирно подвешенных гофрированных шторок-датчиков 15 и системы рычагов. Чем больше поступает в станок продукта, тем больше питающий зазор, и наоборот. Для каждой технологической системы с помощью ограничительного винта вручную устанавливают диапазон автоматического перемещения заслонки.

Привод механизма подачи продукта (см. рис. 17.4) осуществляется плоскоременной передачей 7 от ступицы шкива привода мелющих вальцов. Вращение передается на шкив 6, на одном валу с которым установлено две кулачковые полумуфты 4, 5, которые входят в зацепление одновременно с привалом медленновращающегося вальца. Питающие валки установлены в подшипниках скольжения.

Станина вальцового станка разборная, чугунная, состоит из двух боковин, двух продольных стенок и траверсы. Детали станины соединены между собой болтами. В боковинах сделаны отверстия и проемы для размещения подвижных и неподвижных сборочных единиц станка. Станок полностью закрыт капотом, который изготовлен из четырех съемных нижних и четырех откидных верхних стальных штампованных ограждений.

Работа станка начинается с пуска электродвигателя, от которого клиновыми ремнями вращение передается сначала шкиву верхнего вальца, а затем через межвальцовые шестерни - нижнему вальцу. От ступицы шкива верхнего вальца вращение плоским ремнем передается шкиву питающих валков, а от него - ведущей полумуфте кулачковой муфты.

При заполнении приемной трубы продуктом емкостной сигнализатор уровня обеспечивает замыкание цепи электромагнитного клапана, который соединяет магистраль сжатого воздуха с рабочей полостью пневмоцилиндра. При этом поршень поднимает шток вверх, а от него через систему рычагов разворачивается эксцентриковый вал, который перемещает вверх свободные концы (локти) подшипников нижнего вальца, в результате чего происходит привал мелющих вальцов.

Под действием пружины ведомая полумуфта кулачковой муфты входит в зацепление с ведущей полумуфтой и вращение через шестерни передается питающим валкам. Под действием массы продукта датчик питания через систему рычагов поворачивает заслонку, и через питающий зазор начинает поступать продукт. При прекращении поступления продукта в приемную трубу станка электронная схема размыкает цепь электромагнитного клапана и через систему рычагов происходит отвал мелющих вальцов.



mob_info